programs such as S-STEM for just such students with unmet financial need. Thescholarships allow the students to work less or not at all, and to put more of their energy intoacademics. At Arizona State University, the author has led such scholarship programs with anAcademic Success and Professional Development classes for nearly 15 years. During this timeshe has continually done research on the best way to support and encourage students to do wellacademically, to graduate, and to go right on to graduate school. This research has used groundedtheory and Social Cognitive Career Theory to understand how best to recruit and retain students.Beginning with seminars, over the years, the author developed a successful two-credit AcademicSuccess and
programs at our university. The objectives of the program are to: (i)expand and diversify the engineering/technology workforce of the future, (ii) develop linkagesand articulations with 2-year schools and their S-STEM (Scholarships in Science, Technology,Engineering and Mathematics) programs, (iii) provide increased career opportunities and jobplacement rates through mandatory paid co-op experiences, and (iv) serve as a model for otheruniversities to provide vertical transfer students access to the baccalaureate degree.The program is in its third year. It recruited its first group of 25 students in Fall 2017, andanother group of 27 students in Fall 2018. We hope to recruit 26 more students in Fall 2019 for atotal of 78 vertical transfers. The goal
for Working Families (IIWF) report [3] recommendsaligning education systems with economic development initiatives. Advanced manufacturing andengineering disciplines have key roles in the state of Indiana and the nation’s economic growth.By increasing the number of graduates in both MET and SM, this project supports and enhancesthe economic growth within the state and nationally. Also, being involved in the co-curricularactivities and industry partnerships will help the students improve the very skills the workplacedemands and build on the initial support provided by the scholarship to produce highlyemployable graduates.BackgroundIn fall of 2009, ISU was awarded its first S-STEM program (NSF #0966219) and initially had anundergraduate
Paper ID #41096Board 219: C6-LSAMP - Building Bridges to the BaccalaureateDominic J Dal Bello, Allan Hancock College Dom Dal Bello is Professor of Engineering at Allan Hancock College (AHC), a California community college between UC Santa Barbara and Cal Poly San Luis Obispo. At AHC, he is Department Chair of Mathematical Sciences, Faculty Advisor of MESA (the Mathematics, Engineering, Science Achievement Program), and Principal/Co-Principal Investigator of several National Science Foundation projects (S-STEM, LSAMP, IUSE). In ASEE, he is chair of the Two-Year College Division, and Vice-Chair/Community Colleges of the
engineering students through community building (Evaluation) AbstractOver the past twelve years, the ESTEEM program, funded by the NSF S-STEM, at University ofCalifornia Santa Barbara (UCSB) has supported 161 low-income undergraduate students inengineering. This paper emphasizes the students’ changing needs and what they foundsupportive over time with a special focus on the shifting needs for community building before,during, and after COVID-19 pandemic remote learning. Without additional support, low-incomeengineering students, who often reflect additional intersecting minoritized identities and are morelikely to be the first in their family to attend college, leave the field at
for the retention of first-year students [10]. A report entitled“STEM Students & Their Sense of Belonging: S-STEM Programs’ Practices & EmpiricallyBased Recommendations” identifies cohort experiences as an important factor in academicintegration and success [9]. Offering retention programs is valuable, but if students do not attendor participate, they will not receive the maximum benefits that these programs can provide.Students are more likely to participate in retention programs if they feel a sense of communitywithin the institution [9]. Furthermore, female engineering students, who have been found tohighly value the sense of connectedness, benefit from the positive impact of a supportivecommunity, enhancing their resilience. Thus
computing. She is currently involved with an NSF-funded S-STEM project that awards scholarships to students studying computing at USF. The project implements a suite of community- building activities designed to improve scholars’ self-efficacy and develop computing identity. Sami also co-directed a project that developed system support and user-driven strategies for improving energy effi- ciency in residential buildings. Sami has served in a number of service roles at USF and in her professional community. She was chair of the Computer Science department at USF from 2013-2016. She also served on the editorial board of Sigmobile’s GetMobile Magazine from 2014-2018. She has been involved with the discipline-specific
transfer to a STEM major. While the NSF S-STEM grant specifically focuseson the impact of LIAT students, this population encompasses a fully representative population,one that we aim to carry over to the entire College of Engineering, something that has been anarea of concern and growth for STEM majors/colleges everywhere. Within the two cohorts,underrepresented minority students account for 38% of the total student population, the femalepopulation is 44% of total population, and roughly 38% of students in the program are identifiedas having high financial need through their Pell eligibility.The GEARSET program was designed as a defined pathway to Engineering for students who didnot fulfill the standard admissions criteria for the college of
. Winter has worked with major NSF initiatives (e.g., ADVANCE, HBCU-UP, S STEM) since 2003. KWE is the external evaluator for the AAC&U Project Kaleidoscope (PKAL) initiative, Metacommunity for Broadening Par- ticipation; AAC&U PKAL’s Undergraduate STEM Education Reform (USER) project; and two five-year long consortia-based projects funded by the U.S. Dept. of Education (a FITW and an HSI-STEM). KWE’s areas of evaluation expertise include diversity in STEM, college student access and retention, professional development for faculty, and institutional cultural change. Dr. Winter is a member of the American Evaluation Association (AEA) and the European Evaluation So- ciety (EES), adheres to AEA professional and
in the engineering college which, ultimately, may increase diversity inthe engineering workforce. The program focuses on cohort building, teamwork, mentorship, anddeveloping an engineering identity. Students participate in a week-long summer bridge componentprior to the start of their first semester. During their first year, students take a class as a cohorteach semester, participate in an industrial site visit, and interact with faculty mentors.Since 2016, the Academy of Engineering Success (AcES) program has been funded by a NationalScience Foundation (NSF) S-STEM grant which provides scholarships to eligible programparticipants. Scholarships start at $4,500 during year one and are renewable for up to five yearswith an incremental increase
Education Center at Worcester Polytechnic Institute (WPI). Her degrees in Materials Science and Engineering are from Michigan State University and MIT. Her research interests include pre-college engineering education and equity in education. c American Society for Engineering Education, 2018 Community: Voices from a Small CohortAbstractPEEPS (Program for Engineering Excellence for Partner Schools) NSF S-STEM scholarship wasdesigned to support students from low socioeconomic, first generation and/or underrepresentedgroups in obtaining an undergraduate engineering degree at California Polytechnic StateUniversity in San Luis Obispo (Cal Poly). Students receive up to $10,000/year to aid in
group as a senior engineer, and later brought his real-world expertise back into the classroom at Purdue University Calumet. He is currently a Clinical Associate Professor at the University of Illinois at Chicago where he enjoys success in teaching and education research.Prof. Jeremiah Abiade c American Society for Engineering Education, 2019 Execution Details and Assessment Results of a Summer Bridge Program for First-year Engineering StudentsAbstractThis paper reports the execution details and the summary assessment of a Summer Bridge Program(SBP) that is a part of an ongoing National Science Foundation (NSF) Scholarships in Science,Technology, Engineering, and Math (S-STEM
control. Dr. Rodriguez has given over 70 invited presentations - 13 plenary - at international and national forums, conferences and corporations. Since 1994, he has directed an extensive engineering mentoring-research academic success and professional development (ASAP) program that has served over 500 students. These efforts have been supported by NSF STEP, S-STEM, and CSEM grants as well as industry. Dr. Rodriguez’ research inter- ests include: control of nonlinear distributed parameter, and sampled-data systems; modeling, simulation, animation, and real-time control (MoSART) of Flexible Autonomous Machines operating in an uncertain Environment (FAME); design and control of micro-air vehicles (MAVs), control of bio
had been highly rated at the time of original review. Inpart because of this and in part because it is an important part of proposal review, our reviewerswere asked to closely read the current program description and calls for proposals and evaluatethe proposals with respect to how well they matched the current call. This allowed for apotentially greater range of quality evaluations, with the understanding that there would be amismatch between the current call and the call the original proposals responded to. The callsused in this training were the Preparing Future Engineers: Research Initiation in EngineeringFormation (PRF: RIEF), Scholarships in Science, Technology, Engineering & Math (S-STEM),and the Faculty Early Career Development
certainty. Whereas the students in our previous study hadself-developed this “connecting” skill, our program provides a formal platform forlow-income students to learn and practice those connecting skills at the graduate level.This will allow us to investigate through pre- and post-surveys whether “connecting”skills can be developed through mentorship and whether developed connecting skillsenhance their self-efficacy, STEM identities, and persistence beliefs.This poster shares the results from student surveys completed at the beginning of our firstacademic year of the S-STEM program, reflecting on their undergraduate experiences.Specifically, we highlight the particular FOK held by our students as they enteredgraduate school from engineering and
be close to initial expectations and the game was able to be played at a distancesuitable for a fun experience. This project was a success and student commented “I made anembedded systems laser tag system for my senior design project. I was able to apply what Ilearned in my engineering courses to achieve my design goals. I was able to combine suchsubjects as digital design, embedded systems, electronic systems, digital signals processing, andphysics. I also honed practical skills like soldering, putting together breadboards andprogramming in C. My professor helped me maintain a disciplined schedule to make sure Istarted early on prototypes so my final design would meet my goals”.This project was funded by NSF S-STEM Scholarship program at
Minority Participa- tion (SUNY LSAMP) and the $1 million S-STEM Scholarship Academic and Social STEM Excellence for Transfer Students (ASSETS) programs. These NSF sponsored programs help low-income, and under- represented minority students persist and succeed in STEM majors and careers. Dr. Woodson received his B.S.E in electrical engineering from Princeton University and his Ph.D. in Public Policy for the Georgia Institute of Technology (Georgia Tech).Ms. Rachel Faye Perlman, Stony Brook University Rachel is a PhD candidate in the Interdepartmental Doctoral Program in Anthropological Sciences at Stony Brook University. Outside of her research, she is devoted to accessibility in STEM higher educa- tion. She has
Students1.0 IntroductionThe Academy of Engineering Success (AcES) program, founded in 2012 and operating withNSF S-STEM funding since 2016, implements literature-based strategies to support and retainunderprepared (non-calculus-ready) and underrepresented first-time, full-time undergraduatestudents in engineering with the goals of increasing the number of graduating engineers anddiversifying the engineering workforce [1], [2]. A total of 71 students, including 21 studentssupported by renewable S-STEM scholarships, participated in the AcES program between 2016and 2019 in the Fundamentals of Engineering Program of the Benjamin M. Statler College ofEngineering and Mineral Resources at West Virginia University, a large R1 institution in themid-Atlantic
and teaching, 21st century learning skills, using technologyin the classroom, and STEM career awareness (The Friday Institute for Educational Innovation,2012b). The Teaching Design, Engineering and Technology (DET) survey measures teacherperceptions and familiarity with these subjects and perceived barriers to teaching these topics.The DET survey has 40 questions using a 5 point Likert scale (Tao, Purzer, & Cardella, 2011).TRAILS students are being surveyed to assess interest and confidence in learning STEMsubjects as measured by the Students Attitudes Toward STEM Survey (S-STEM) for middle andhigh school students (Friday Institute for Educational Innovation, 2012a). Student participantsare surveyed in both the experimental and comparison
project. Finally, MEP mentors participatedin several planned social events with MSEN participants in order to help build relationships amongmentors and MSEN students. The project culminated in a poster session where participantsshowcased their design projects to an audience of K-12 administrators, corporate partners, facultyand parents.Preliminary ResultsThe Student Attitudes toward STEM (S-STEM) for Middle and High School (6-12)20 uses a 5-pointLikert scale (1=strongly disagree, 2=disagree, 3=neither agree nor disagree, 4=agree and5=strongly agree) to evaluate students’ confidence and attitudes toward math, science, engineeringand technology and 21st century learning. It was administered in a pre/post format. To get a betterunderstanding of
InterviewsMSEN teachers, student participants, and mentors participated in either focus groups or interviewsto determine the program’s impact on the items outlined in the evaluation criteria. Semi-structuredinterview protocols were used to guide discussions with participants. Interviews and focus groupswere digitally recorded and transcribed. A reflective analysis process was used to analyze andinterpret interviews and focus groups.Test of Students’ Science KnowledgeA student science content knowledge assessment aligned to the instructional goals of the researchcourse was developed and administered at the onset and conclusion of each part of the course.S-STEM SurveyThe S-STEM Student Survey measures student self-efficacy related to STEM content
Junior 2014 26 11 15 25 1 0 2015 19 10 9 19 0 2 ENE, MFE 1 NSF S-STEM Scholar 2016 24 16 8 22 2 N/A N/ANotations: BIO- Biology; CHM – Chemistry; COM- Computer Science; ENE – EnvironmentalEngineering; MFE- Manufacturing Engineering; WRM – Water Resources ManagementNA – Not Available; N/A – Not ApplicableConclusions and AcknowledgementThe authors want to thank the sponsors, especially ODOT and FHWA for their continuingsupport for the STI program that tremendously make all parties -the transportation industry,government, students and the university- win at the end. This is a very helpful
SchoolStudent Attitudes toward STEM (S-STEM) Survey 3 , while the 6th graders were given TheMiddle/High School Student Attitudes toward STEM (S-STEM) survey 4 . The survey has asection on Math, Science, Engineering/Technology and 21st Century skills that have statementson a Likert scale ranging from “Strongly Disagree” to “Strongly Agree,” to obtain students’opinions of, and performance in, these categories. There is also a section titled “Your Future” toevaluate the students’ interest in certain subject areas related to STEM. The only differencebetween the surveys was that the Middle/High School survey also asked 2 additional questionsabout advanced classes and college plans. When filling out the pre-survey, we noticed studentswere getting restless
engineering texts on classical controls, linear systems, and multivariable control. Dr. Rodriguez has given over 70 invited presentations - 13 plenary - at international and national forums, conferences and corporations. Since 1994, he has directed an extensive engineering mentoring-research academic success and professional development (ASAP) program that has served over 500 students. These efforts have been supported by NSF STEP, S-STEM, and CSEM grants as well as industry. Dr. Rodriguez’ research inter- ests include: control of nonlinear distributed parameter, and sampled-data systems; modeling, simulation, animation, and real-time control (MoSART) of Flexible Autonomous Machines operating in an uncertain Environment
Paper ID #13255BRCC to LSU Engineering Pathway to Success - Assessment MeasuresDr. Tanya Karam-Zanders, Louisiana State UniversityMrs. Sarah Cooley Jones, Louisiana State UniversityDr. Warren N. Waggenspack Jr., Louisiana State UniversityDina Acklin, Louisiana State University Page 26.289.1 c American Society for Engineering Education, 2015 BRCC to LSU Engineering Pathway to Success – Assessment MeasuresThe National Science Foundation (NSF) S-STEM funded scholarship program, EngineeringPathway to Success, is a joint effort of the
creators of The Science Of . . . a web-based video magazine. In addition to her role as Associate Provost Dr. Cements is also the director of Experiential Learning and a tenured Professor of Biology and Marine Science at Jacksonville University.Cindy LeongMisha M ChalkleyMr. Crandall Maines, Jacksonville University Engineering c American Society for Engineering Education, 2018 Co-curricular and Extra-curricular Experiences of NSF- supported ScholarsAbstractThe Mathematics, Engineering, and Physics (MEP) scholar program at our university supportedby NSF S-STEM scholarship program is preparing individuals for the STEM workforce byproviding an educational experience
culturewith a focus on better supporting traditionally underrepresented students. Subsequent researchwill explore how student participation in these types of engagement activities correlate to thedevelopment of an inclusive makerspace and engineering education culture.Acknowledgement – This material is based upon work supported by the National ScienceFoundation S-STEM program under Grant No. 1834139. Any opinions, findings, andconclusions or recommendations expressed in this material are those of the authors and do notnecessarily reflect the views of the National Science Foundation.References[1] M. Galaleldin, F. Bouchard, H. Anis and C. Lague, "The impact of makerspaces on engineering education," in Proceedings of the Canadian Engineering
devote $100,000 to students Students Field is receive more time to grant from diverse graduate diversified scholarships school backgroundsLet’s walk through what a very simple fleshed-out logic model might look like.Notice the overarching categories that we talked about before.In this case, we provide examples of these overarching categories to show what a logicmodel for a scholarship program might look like.Of course, many scholarship programs (like s-STEMs or NRTs) also have other programcomponents that we would need to include, probably as new rows in this table
," Journal of Education in Science, Environment and Health, Jan. 2021, doi: 10.21891/jeseh.771331.[6] M. Sorroza Aguilar, "Soft Skills in STEM," Honors Undergraduate Theses, Jan. 2023, [Online]. Available: https://stars.library.ucf.edu/honorstheses/1425[7] T. R. Brown and M. Ahmadian, "Improving Students' Soft Skills through a NSF-Supported S-STEM Scholarship Program," presented at the 2014 ASEE Annual Conference & Exposition, Jun. 2014, p. 24.722.1-24.722.6. Accessed: Dec. 15, 2023. [Online]. Available: https://peer.asee.org/improving-students-soft-skills-through-a-nsf-supported-s-stem- scholarship-program[8] S. Langar and T. Sulbaran, "Framework for a Summer Experience Based on Transformational Leadership and
ConfidenceAbstractBecause cybersecurity professionals are crucial to national security, public safety, and economicprosperity, employment opportunities in cybersecurity continue to increase. To meet the publicand private sectors’ need for cybersecurity professionals, universities are adding academicprograms in cybersecurity. West Virginia University, which is a land-grant R1 university with avibrant cybersecurity program that offers a B.S. degree, academic minor, and an Area ofEmphasis (AoE) in cybersecurity, has received an NSF S-STEM grant to increase the numberand diversity of highly qualified cybersecurity graduates by offering scholarships to high-achieving and economically challenged undergraduate students.Our past research was focused on grit and motivation