emphasis on the adoption of evidence-based instructional practices.Miss Alexandra Longo, American Society for Engineering Education Please note I am submitting this paper on behalf of Dr. Rocio Chavela Guerra. Alexandra Longo is Senior Program Manager of Education and Career Development at ASEE, where she leads ASEE webinars and manages stakeholder meetings and externally funded programs and projects. Prior to joining ASEE, Alexandra worked at the Solar Electric Power Association (SEPA) and the Society for Neuroscience (SfN). Alex has a passion for instructional design, informal education, and hands-on learning, and received her MA in Museum Education from Seton Hall University in 2013.Rossen Tsanov, American Society
al. (2016) pointed out that the university-basedentrepreneurial ecosystem is a complex network composed of individuals, projects,departments and units, and supports the realization of commercialization and entrepreneurship in the form of infrastructure, leadership support, education and training, financing and innovation culture. In fact, although some scholars have been discussing the university-based entrepreneurship ecosystem, they have not yet reached a consensus on its concept, but the elements of that ecosystem proposed by scholars also share some commonalities (Table 1). Table1 University-based entrepreneurial ecosystem dimensionsBuilding blocks for University
abaccalaureate STEM degree and support the re-employment of these veterans into the Departmentof Defense (DoD) and the wider defense support industry. The program builds on the training thatveterans have received in highly skilled technical areas, both in the classroom and “on-the-job” todevelop systems level expertise in their respective rating classifications. Ultimately, veteransparticipating in the proposed pilot project will provide closure to the mid-career gap of the DoDand Department of Navy (DoN). Veterans from this program will possess STEM professionaltraining and a greater system level expertise than those engineers typically coming from highschool to college and will bring a level of leadership maturation that comes from their years
graduated Magna Cum Laude in May 2013 with a Bachelor’s of Science in Electrical Engineering and a minor in Mechanical Engineering. He completed a 10 week internship for NASA at Johnson Space Center where he designed a microstrip patch antenna for the International Space Station for use in RFID technology. After graduating from USM, ENS Wilson reported to Officer Candidate School (OCS) in Newport, RI and was commissioned on September 20th, 2013. Following OCS, he reported to Civil Engineer Corps Officer School (CECOS) in Port Hueneme, CA graduating in CECOS Basic Class 256 in May 2014. In May 2014, ENS Wilson reported to Naval Air Station Corpus Christi as a construction manager where he has currently managed 45 projects
and the P.I. of the NSF ATE funded Engineering Technology Open-Entry / Open-Exit project at Polk State College. At CLEE, Dr. Roe is responsible for the college’s professional engineering master’s degree programs, engineering professional development, conferences, and customized corporate training. At Polk State Dr. Roe was the Director of Applied Technology and founder of the Manufacturing Talent Development Institute. In these roles he oversaw the shift from a traditional program to a competency-based Open- Entry / Open-Exit Engineering Technology AS degree, served the state through the ManufacturingTDI statewide resource center bridging industry and talent development systems, and served as Co-Principal
efforts.IntroductionFinancial, physical, and human capital resources are used to provide additional efforts intendedto support undergraduate students in STEM, particularly underrepresented racial, ethnic, gendergroups in certain disciplines [1]-[3]. With U.S. demographic projections indicating a growth indiversity of the population, we can anticipate an increasingly diverse population ofundergraduate students. In preparation for this shift in demographics and in response to historicalissues of diversity in STEM, it is important that we begin to rethink our offerings of studentsupport.The larger project in which this paper is situated aims to help colleges improve their studentsupport investments by developing and testing the validity evidence for an instrument
several other organizations for a total of more than $2 million. His current research interest focuses on rural community engagement for transportation projects, road user cost, sustainable design and construction for knowledge based decision making, and engineering technology education. He also con- tributed to data analysis methods and cost effective practices of highway construction quality assurance program.Dr. Uddin is a proponent of project based learning and developed innovative teaching strategies to engage his students in solving a real-world problems and prepare them with skills and knowledge that industry requires. Dr. Uddin is a member of ASEE, ASCE, TRB and CRC. Dr. Uddin is active with ASEE engineering
Paper ID #43419Engineering a Bridge Across Cultures: Insights to Support Dialogue withEngineering Professionals on Ethical and Social Design ConsiderationsMs. Tiffany Smith, NASA Tiffany Smith serves as NASA’s Chief Knowledge Officer (CKO) and Director of the Office of the Chief Engineer’s Academy of Program/Project and Engineering Leadership (APPEL). Ms. Smith is responsible for managing NASA’s APPEL Knowledge Services learning and development program, providing strategic communications and continuous learning to project management and systems engineering personnel, and overseeing knowledge services across the agency in
Paper ID #43559Developing Engineering Identity Through StoryDr. Michelle Marincel Payne, Rose-Hulman Institute of Technology Dr. Michelle Marincel Payne is an Associate Professor in the Civil and Environmental Engineering at Rose-Hulman Institute of Technology. She earned her Ph.D. in Environmental Engineering from the University of Illinois at Urbana-Champaign, her M.S. in Environmental Engineering from Missouri University of Science and Technology, and her B.S. in Nuclear Engineering from the University of Missouri-Rolla (same school, different name). At Rose-Hulman, Michelle is leading a project to use story to help
Paper ID #42186Board 265: Enhancing the Transfer Experience through a Collaborative CohortProgram: the Culmination of a 5-year NSF S-STEM Program at a CommunityCollegeDr. Claire L. A. Dancz, Clemson University Dr. Dancz is the Associate Director for Instructional Innovation in the Office of Teaching Effectiveness and Innovation at Clemson University.Dr. Elizabeth A Adams P.E., California Polytechnic State University, San Luis Obispo Dr. Elizabeth Adams is an Assistant Professor at Cal Poly in San Luis Obispo, California. She a civil engineer with a background in infrastructure design and management, and project management. Her
Engineering IdentityAbstractThis paper is a work in progress (WIP) for an NSF project that explores first-generation students(FGS) in engineering technology (ET); specifically, their academic performance, engineeringidentity development, and use of social capital all compared to continuing generation students(CGS) peers. Despite the growing number of engineering technology degrees awarded annually,there is a scarcity of research focusing on the acquisition of engineering identity, particularlyamong FG students. Overall, this project will utilize a two phase, mixed methods approach. Inthe first phase, we will quantitatively assess academic performance comparisons between firstgeneration and continuing generation engineering students and utilize the
STEMTank 2023, a high school summerprogram sponsored by the U.S. Department of Education. SF and UF have jointly offered theaward-winning STEMTank program for four consecutive summers, providing pre-college accessexperiences for high school students from North-Central Florida’s under-resourced communities.The program’s hallmark is giving participants a taste of an engineering college experience throughunique, open-ended design / build / test projects grounded in contemporary real-world engineeringproblems that include 1) analytical modeling to guide the design process, 2) prototype performancemeasurement with redesign / retest opportunities to improve performance, and 3) presentation ofresults by student participants to panels of subject matter
IEC Core MSI faculty release time andresearch expenses so that their student cohort could begin their research experience at their homeinstitution. Faculty from UCSD and the student’s home institution co-advised the students for theentire year of the project. This helped the students be prepared to make optimal use of their timeat UCSD. In addition, faculty at the IEC Core MSI schools were able to build their local researchactivities and develop collaborations with UCSD faculty. Students were encouraged to attendgraduate school and provided additional preparation by participating in an internship trainingexperience at UCSD. The two IEC Core MSI schools participating were one HBCU FAMU andone HSI UTEP. Students were also encouraged to apply
includes a three-semester MS track (30credits) or a two-semester certificate track (15 credits), both of which are infused with career-focused learning. Within their programs, GEES scholars engage in real-world projects,industry-based internships, and networking with professionals. This structure is designed toequip them not only with technical skills but also with the ability to navigate complexworkplace environments.GEES goes beyond classroom education by integrating co-curricular activities that fosterprofessional skills. For example, students participate in workshops on job search strategies,interview techniques, and negotiation skills, helping them navigate the professional worldwith confidence. Each student is also matched with an industry
Institution STEM Articulation grant ($4.4 million) from the USDepartment of Education. This ongoing project which serves as a STEM pipeline is incollaboration with two local state/community colleges. Collaborating with BrowardCollege and Palm Beach State College, the three institutions are promoting therecruitment of Hispanic and low-income students who matriculate from the statecolleges where they complete their AA degree and then enter FAU to complete a BSdegree in computer science and related fields. This project assists students at everylevel as they transition from state college to FAU so as to ensure a more diversifiedand successful technological workforce
“active learning.” We chose to limit the scope of this review to studies thatspecifically focus on social justice, but want to recognize that additional empirical work is beingdone, and, although not included in this review, that work also informs the implementation ofsocial justice work in our engineering classrooms.Literature examining courses that integrate social and technical aspects of engineeringMost of the papers we reviewed did not mention the use of a framework in the design of thecourse or in the evaluation of student outcomes (e.g., [1], [28]–[30]). Those that did used avariety of different frameworks. Specifically, Chen et al. [31] used Problem-Based and Project-Based Learning (e.g., [32]), Leydens et al. [13] and Reynante [33] used
[4]. Therefore, these engaging, accessible, and affordable courses and challenge problemshave been and will continue to be developed to reach more students throughout the state, and inthe future, the country.SLI’s goal is to increase the number of students and enhance the education of students pursuingcareers in space. The objective is to create an integrated set of educational resources, implementthem strategically in undergraduate classrooms, K-12 classrooms, outreach events, andworkshops, and assess their efficacy in achieving our goal. The public benefit of the project isexpanded opportunities, materials, and resources for enhancing K-12, undergraduate,teacher/professor, and public knowledge and understanding of space science and
c Society for Engineering Education, 2022 Factors Affecting Motivation and Concentration of Engineering Students in ClassroomsIntroductionThis paper examines and presents the factors affecting the motivation and concentration span ofengineering students in classrooms. Our work carries out most of the recommendations of theprevious works but also deviates in the sense that it is studying the motivation of the studentsrather than their concentration span. This project also was conducted pre-pandemic and a long-term goal of this study is to be used to get a better understanding of engineering students in anall-virtual learning system like the one implemented during the pandemic. This project examinesthe
research involves examining different types of homework problems in undergraduate engineering science courses, the intersection of affect and engineering identity, and improving the teaching of engineering courses.Courtney Burris ©American Society for Engineering Education, 2023 Addressing Engineers and Stakeholders Social and Institutional Power in a Human-Centered Design Capstone CourseIntroductionAs trained professionals, engineers have well recognized areas of expertise. Such expertise oftentranslates into expert power in their professional practice. Expert power can be defined as theability to influence other people, decision-making, and project planning and/or project outcomesbased on the
formal high school classrooms. Initial survey and interview dataindicate that teachers became comfortable with facilitating the open-endedness of the finalprojects and that students appreciated the connections to socially relevant topics and the abilityof their projects to help with real-world problems such as flood prevention and wheelchairaccessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee andadoption through the North Carolina Department of Public Instruction is currently underway.Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted thematerials. Together with researchers, we are working to package the course and curricula forwidespread adoption as additional support to
to technology-richenvironments like makerspaces for traditionally underserved youth in engineering. Several pro-Makerspace actors purport that having experiences in such open-ended project-based settings canencourage engagement with engineering. However, as we know from prior work in the area,simply providing access to technology-rich spaces does not allow underserved youth to feelownership and belonging in both makerspaces and engineering environments. Additionally,formal and informal engineering education experiences do not center on preventing harm tocommunities and the environment in engineering work. Not only do future generations ofengineers need to reduce the harm caused by engineering and technology proactively, but harmreduction
ourstudents when learning from their homes with the present limitations. These activities allowstudents to explore phenomena through “remote” labs (not simulations), project generation usinga supply of pre-existing materials (constraints that any project has at any time), and in particular,the development of projects based in easy to find at home materials.In this paper, the Author will present three strategies to promote STEM education throughremote learning: 1) Laboratory activities for college-level students 2) Hands-on activities forhigh-school students through informal education settings, and 3) Activities for the public at largethrough social media (Facebook liv and YouTube) and sponsored by public institutions. TheAuthor implemented these
Paper ID #35545Sharing Exemplary Admissions Practices that Promote Diversity inEngineering Panel DiscussionDr. Elizabeth Cady, National Academy of Engineering Dr. Elizabeth T. Cady is a Senior Program Officer at the National Academy of Engineering (NAE). She has worked on a variety of projects that examine and enhance systems for the formal, informal, and life- long education of engineers and improving diversity and inclusion in engineering. She is leading a project that will recognize and share innovative practices that improve diversity in undergraduate engineering education and also staffs a consensus study examining
. Robin Fowler, University of Michigan Robin Fowler is a lecturer in the Program in Technical Communication at the University of Michigan. She enjoys serving as a ”communication coach” to students throughout the curriculum, and she’s especially excited to work with first year and senior students, as well as engineering project teams, as they navigate the more open-ended communication decisions involved in describing the products of open-ended design scenarios.Mark Mills, UM, Center for Academic Innovation Mark Mills is a Data Scientist with the Center for Academic Innovation at the University of Michigan. He is responsible for leading analysis across the Center in support of its mission to leverage data for shaping
also a broad experience in the glass industry, specifically in fabrication of automotive safety glass. He worked for Vitro Glass Company for more than 19 years where he held different positions such as Process Engineer, Materials Planning and Logistics Manager, Production Superintendent, Manufacturing Engineer and Glass Technologist. During his time in the company, he co-authored two patents related to glass fabrication and glass coatings pro- cessing. Dr. Gonzalez is a Six-Sigma Black Belt and has participated in numerous process improvement projects. He has been trained as well in the Methodology of Inventive Problem Solving (TRIZ) that he applied to solve complex problems. In the manufacturing operations field
, bioinformatics, information retrieval and computer science education.Dr. Joseph Arthur Brobst, Old Dominion University Joe Brobst holds a BS in Biological Sciences, MA in Curriculum & Instruction, and Ed.D. in Educational Leadership, all from the University of Delaware. Formerly a high school biology teacher, he is now an ed- ucational research and program evaluation specialist with experience working on a wide range of projects sponsored by organizations including the National Science Foundation, National Institutes of Health, Of- fice of Naval Research, U.S. Department of Education, and Corporation for National and Community Service. His areas of interest and expertise include broadening participation in STEM higher
Paper ID #33653Electronic Mentoring During the COVID-19 Pandemic: Effects onEngineering Graduate Students’ Academic, Career, and Mental HealthOutcomesDr. Chi-Ning Chang, The University of Kansas Dr. Chi-Ning (Nick) Chang is an assistant research professor at the Life Span Institute at the University of Kansas. This study was funded by the National Science Foundation (NSF) RAPID grant (DGE-2031069; DGE-2051263), using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. Chang currently serves as a PI on this collaborative NSF project (DGE-2031069). His research work centers on engineering graduate
action.Critical reflection is embedded within a program that recruits both engineers and non-engineers,with teaching and learning strategies drawn from the social sciences and humanities andintegrated with engineering management and problem-based learning. The program connectsstudents to a project partner in Sierra Leone or Zambia, the students work to understand theirpartners’ needs and assets and then develop an intervention plan consistent with the aims of theSDGs.In this paper, we provide results of a critically reflexive thematic analysis to explore the nature ofstudent reflections within the context of this interdisciplinary program. Evidence suggests arange of student interpretation of the purpose and application of critical reflection. Some are
Engineering on the topics of soil-structure interaction and engineering characterization of geomaterials, Dr. Pando has been actively involved in teaching and mentoring students at both UPRM and UNCC, including 14 undergraduate civil engineering students through the NSF Louis Stokes Alliance for Minority Participation Program. Examples of his recent and ongoing engineering education research projects include the development of a Bridge to the Doctoral Program to attract Latinos to geotechnical earthquake engineering (NSF-NEES), use of a multi-institutional classroom learning environment for remote geotechnical engineering education (NSF-TUES), as well as a mixed methods study of the role of student–faculty relationships in
engineering education, retention of underrepresented students, measurement, and assessment. She is currently a Research Associate on the Sustainable Bridges NSF IUSE project (Amy Freeman, PI). Previously, she was the project coordinator the the Toys’n MORE NSF STEP project (Renata Engel, PI). c American Society for Engineering Education, 2017Sustainable bridges from campus to campus: Preliminary results from Cohort 1 (NSF IUSE #1525367) 04/04/2017 Sustainable bridges from campus to campus: Preliminary results from Cohort 1 AbstractThe impetus for the Sustainable Bridges from Campus to