learn to see individualstructures or features, and to ask what function that structure or feature accomplishes and whythat is important to the organism. When students are practiced in this, they “learn to see theworld through new eyes” – the world around them is no longer part of the background of theirlives, but rather is now filled with potential solutions to challenging design problems [16].Curriculum BID specific ActivitiesSeveral standard lessons and activities were used for teaching engineering, brainstorming forideas, and as empathy building exercises for problem description. For example, we useSCAMPER, a semi-structured approach to ideation and improving ideas. The categories are, (S)Substitute, (C) Combine, (A) Adapt, (M) Modify
, M. Henderson, E. Creely, A. A. Carvalho, M. Cernochova, D. Dash, T. Davisand P. Mishra, "Creativity and risk-taking in teaching and learning settings: Insights from sixinternational narratives," International Journal of Educational Research Open, vol. 2, no. 2, pp.1-11, 2021.[6] N.R. Kuncel, S. Hezlett, and D. Ones, "Academic performance, career potential, creativity,and job performance: Can one construct predict them all?," J. Educ. Psychol., vol. 102, no. 3, pp.599-616, Aug. 2010.[7] P. C. Wankat, R. M. Felder, K. A. Smith and F. S. Oreovicz, "The scholarship of teachingand learning in engineering," in Disciplinary Styles in the Scholarship of Teaching andLearning: Exploring Common Ground, vol. 1, Indiana University Press, 2002, pp. 217
engineering, many of the URM studentsstruggle to complete their degree due to various factors: inadequate academic preparation,insufficient awareness career options, lack of necessary financial, academic, social, and culturalsupport for success, and low levels of self-efficacy.To address these barriers and build capacity for student success, SFSU has partnered with twolocal HSI community colleges, Skyline College and Cañada College. This collaboration involvesdeveloping and implementing several strategies through the Strengthening Student Motivationand Resilience through Research and Advising (S-SMART) project, which is funded by theNational Science Foundation's HSI Improving Undergraduate STEM Education (IUSE) program.One of the strategies developed
classified below as subtopics: 1. Established identity in CS with themselves and others. 2. Personal experiences and challenges in CS that are gender and/or race related. 3. Psycho-social characteristics experienced. 4. Personal feedback/recommendations for promoting equity, inclusion, and representation of black women in CS.Each subtopic and corresponding findings are discussed below.4.1 Established Identity in CS with Themselves & OthersFindings for this classification were based on five key questions that were asked during the focusgroup sessions: Q1: Do the participant(s) exhibit an identity towards computer science? Q2: Do the participant(s) consider themselves as computer scientists? Q3: Are they proud to be
Learning Community. He has offered a variety of high-school and first-year introductory and professional development courses over the last two decades. ©American Society for Engineering Education, 2023 Student Persistence Factors for Engineering and Computing Undergraduates Robert Petrulis2, Sona Gholizadeh1 , Ed Gatzke1 (1) University of South Carolina, Columbia, SC (2) EPRE Consulting, Columbia, SCAbstractThe research and evaluation team of an S-STEM project at a large, research-intensiveSoutheastern public university conducted a cross-sectional survey as a first step to comparefactors which may influence undergraduate student persistence in
when accomplishing this purpose. Specifically, a largeamount of information is considered indirect knowledge, or knowledge only reasonablyaccessible to a learner through social contact [1]. Further, within the learning context,interactions are adapted reciprocally by the learning environment and learner [2]. These andrelated foundations indicate that understanding the social aspect(s) of the learning environment isessential for understanding and improving learning.To identify and optimize social variables related to student learning, recent engineeringeducation literature shows a growing awareness of and interest in peer support. Theseobservations of student interactions and outcomes indicate improved learning, motivation, andself-efficacy due
in the United States,” J. Int. Stud., vol. 4, pp. 223–235, 2014.[2] E. Duffin, International students in the U.S. 2004-2022, by academic level. Statista, 2023. [Online]. Available: https://www.statista.com/statistics/237689/international-students-in-the-us-by-academic-leve l/[3] J. Trapani and K. Hale, Higher education in science and engineering: International S&E higher education. National Science Board, 2022. [Online]. Available: https://ncses.nsf.gov/pubs/nsb20223/international-s-e-higher-education[4] C. Collins and A. Thompson, “International students and scholars,” Purdue University, International Students & Scholars, Enrollment & statistical report fall 2022., 2022. [Online]. Available: https
system users andother practitioners. For example, the LSRM may enhance the CATME system by accuratelymodeling longitudinal social relations data, and thereby improving the evaluation of teamdynamics and identifying potential areas for improvement. Ultimately, this may help instructorsbetter support their students' collaborative learning experiences and foster a more inclusivelearning environment. ReferencesAgrawal, A. K., & Harrington-Hurd, S. (2016). Preparing next generation graduates for a global engineering workforce: Insights from tomorrow's engineers. Journal of Engineering Education Transformations, 29(4), 5-12.Alsharif, A., Katz, A., Knight, D., & Alatwah, S. (2022). Using
Paper ID #38852Applications of Teams and Stories: Augmenting the Development ofEntrepreneurial Mindset in EngineersDr. Ellen Zerbe, Georgia Institute of TechnologyDr. Adjo A. Amekudzi-Kennedy, Georgia Institute of Technology Professor Adjo Amekudzi-Kennedyˆa C™s research, teaching and professional activities focus on civil infrastructure decision making to promote sustainable development. She studies complex real-world sys- tems and develops infrastructure decision support systemDr. Kevin Haas, Georgia Institute of Technology Associate Chair of Undergraduate Programs, School of Civil and Environmental EngineeringDr. Robert
complicated impacts of learning technologies and design on K-12 STEM curriculum, pedagogy, and institutional policies in the Philippines and Canada.Prof. Andre Phillion, McMaster University AndrA©˜ Phillion is an Associate Professor in the Department of Materials Science and Engineering and Director of the facultyˆa C™s Experiential Learning Office at McMaster University, Hamilton, Canada. His research interests focus on mathematical modelling ©American Society for Engineering Education, 2023 First-Year Students in Experiential Learning in Engineering Education: A Systematic Literature ReviewDr. Gerald TembrevillaGerald Tembrevilla is an Assistant Professor at Mount Saint Vincent
aframework comprising 12 attitudes and 17 behaviors that align with the 3Cs.Parallel to the entrepreneurial mindset, we can define an innovation mindset as a set of beliefsand attitudes that lead to developing the capacity to produce valuable novelty. There is also adistinction between individual innovativeness and the innovation mindset. For example, Hunteret al.’s conceptual model of innovativeness [11] includes constructs such as knowledge, skills,and abilities, while the innovation mindset emphasizes dispositions, attitudes, and propensities[12]. Couros [13] describes eight characteristics of an innovator’s mindset: empathic, problemfinders/solvers, risk takers, networked, observant, creators, resilient, and reflective.This paper investigates
, meaningful connections to existingstructures in the community will be leveraged to continue research and outreach. AcknowledgementsThis material is based upon work supported by the National Science Foundation under Grant No.1943098. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the author(s) and do not necessarily reflect the views of the National ScienceFoundation. References[1] C. A. Carrico, “Voices in the Mountains: A Qualitative Study Exploring Factors Influencing Appalachian High School Students’ Engineering Career Goals,” 2013.[2] S. Ardoin, College aspirations and access in working-class rural communities
projects. The preliminary learning outcomes and framework presented in this studycan guide students through multiple stages where incorporating contextual factors is relevant andprovide prompts for reflection and methods to do so iteratively throughout their designprocesses. The findings from this work have implications for engineering design pedagogy and,ultimately, the potential to improve engineering graduates’ abilities to develop contextuallysuitable solutions.References[1] C. B. Aranda-Jan, S. Jagtap, and J. Moultrie, “Towards A Framework for Holistic Contextual Design for Low-Resource Settings,” Int. J. Des., vol. 10, no. 3, p. 21, 2016.[2] P. Clyde et al., “25 Years of Health Care Delivery in Low- and Middle-Income Countries
preference for oral exams over written exams (16/16/24/24/20%). Table V. End-of-quarter survey. Not at all/ Significantly/ # Question Slightly Moderately To a great extent Did the oral exam(s) help you master the subject material better or provide extra incentive to do so? Did 1 they contribute positively to your learning in the course
able to: Summarize the problem into research Synthesis. Relate knowledge from several question(s) areas i.e. compose, combine, create Design the experiment in steps, at least Evaluation. Making choices based upon identify variables to be manipulated and reasoned arguments responding variables Predict the behavior or have hypothesis Synthesis. Relate knowledge from several areas i.e. compose, combine, create Collect and organize the data in table(s) that Analysis. Organization of parts. Identification is logical and understandable of components (order, classify, arrange) Plot the data
satisfaction regardless of the venue. The typical way to show results from a 5-point Likert scale is to show the values indistribution bars. Visualizing in this way is helpful for research when measuring impact but lesshelpful to inform decisions on actions to take based on the results. In this work, we convert theresponses into a percentage to support program benchmarking and facilitate goal setting and thenuse that to assign a letter grade. We then convert the results from each student to a percentage bysumming up all the scores given by the student and dividing by 35 (i.e., seven items x five-pointscale). For example, a student who responds to the PS items with 5's to six items and 4 to oneitem, provides a score of 34 out of 35 possible points
, mathematics, and physics. His current research interests are focused on educational innovation and educational technologies.Dr. Gibr´an Sayeg-S´anchez, Tecnologico de Monterrey (ITESM) Dr. Gibr´an Sayeg-S´anchez is professor – consultant in the Science Department in Tecnologico de Mon- terrey, Puebla campus. He studied a PhD in Financial Science in EGADE Business School (2016), a MSc in Industrial Engineering in Tecnologico de Monterrey (2011), and a BEng in Industrial and Systems En- gineering in Tecnologico de Monterrey (2006). Dr. Sayeg-S´anchez has more than 11 years of experience in teaching statistics, mathematics, and operations research; and more than 13 years of experience in Op- erational Excellence consulting
of the technology used for theShinkansen was developed during the war for non-peaceful purposes. However, post-warJapanese engineers felt the need to expunge their guilt at having developed such technologyand instead utilised it for more peaceful purposes. The learning outcomes from this lecture were measured by filling out a questionnaire.Most of them mentioned their redemption by developing technology used for the war,importance of having a peaceful mindset, safety, and/or the contribution of the threeengineers as the most impressive lessons learned (see their feedback in ‘Program evaluation’below). Figure 4: Some slides from Lectures on ShinkansenProgram evaluation1. Quantitative analysis: MGUDS-S SIT values
status and nature of K-12 engineering education in the U.S.” The Bridge 39, 3, pp. 5-10.[4] National Academy of Engineering, & National Research Council. (2009). Engineering in K-12 Education: Understanding the status and improving the prospects. Washington, DC: The National Academies Press.[5] I. Zeid, J. Chin, C. Duggan, and S. Kamarthi (2014). “Engineering Based Learning: A Paradigm Shift for High School STEM Teaching.” International Journal of Engineering Education 30(4), pp. 876-887.[6] M. S. Zarske, J. L. Yowell, H. L. Ringer, J. F. Sullivan, and P. A. Quinones (2012). “The Skyline TEAMS Model: A Longitudinal Look at the Impacts of K-12 Engineering on Perception, Preparation, and Persistence.” Advances
. In the following sections, the studies on the effectiveness of game-basedlearning (GBL) are summarized first and review on its implementation potential to engineeringeducation is provided as well. Then, the developed game is explained briefly with the learninggoal and topics. We implemented this learning module in two different settings, first for 25 highschoolers at a civil and environmental engineering departmental summer camp and second for alittle under 30 community resilience researchers at the National Institute of Standards andTechnology (NIST)’s Center of Excellence for Community Resilience semi-annual meeting.Feedback was collected after the second implementation which is presented as well to discuss themodule’s future development
students’ learning. Dr. Darabi’s research has been funded by federal and corporate sponsors including the National Science Foundation, and the National Institute of Occupational Health and Safety.Mrs. Rezvan Nazempour, The University of Illinois, Chicago Rezvan Nazempour is a graduate research assistant at the University of Illinois at Chicago. She is com- pleting her Ph.D. in Industrial Engineering and operations research at the Mechanical and Industrial En- gineering Department. She received her BSIE fromDr. Peter C. Nelson, The University of Illinois, Chicago Peter Nelson was appointed Dean of the University of Illinois at Chicagoˆa C™s (UIC) College of Engi- neering in July of 2008. Prior to assuming his
context.AcknowledgmentsThis work was made possible by a U.S. Department of Education Graduate Assistance in Areasof National Need (GAANN) Grant Number P200A210109 and by a NSF Innovations inGraduate Education (IGE) Program [IGE DGE#2224724] grant. 5 References[1] Gilmore, J. A., Wofford, A. M., & Maher, M. A. (2016). The Flip Side of the Attrition Coin: Faculty Perceptions of Factors Supporting Graduate Student Success. International Journal of Doctoral Studies, 11, 419–439. https://doi.org/10.28945/3618[2] S. Spaulding, L., & Rockinson-Szapkiw, A. (2012). Hearing their Voices
institution.Faculty participating in our study were asked to develop projects and course integrations that aim todevelop some aspect(s) of students EM. The final deliverable, at the conclusion of the 2-year period, isthe submission of an Engineering Unleashed Card [8]. These cards function as a combination of blog andresource-sharing website all in one page, documenting the course plans/activities with sufficient detailthat other faculty could then take the plan/activity and modify it to fit and deploy it in their own courses.Research on mentoring models for faculty developmentThere has been a growing body of research on the effectiveness of peer mentoring programs rooted insocial cognitive theories and research on influence [9]. Social cognitive theory, SCT
undergraduate students NicholasInsinga, David Lentz, Dylan Letcher, Alfred Marchev, and Ryan Petzitillo who assisted in thedevelopment of the interview protocol and identification of the initial emergent codes.References[1] A. Godwin and A. Kirn, “Identity‐ based motivation: Connections between first‐year students’ engineering role identities and future‐time perspectives,” J. Eng. Educ., vol. 109, no. 3, pp. 362–383, 2020, doi: https://doi.org/10.1002/jee.20324.[2] D. R. Simmons, J. Van Mullekom, and M. W. Ohland, “The Popularity and Intensity of Engineering Undergraduate Out‐of‐Class Activities,” J. Eng. Educ., vol. 107, no. 4, pp. 611–635, Oct. 2018, doi: 10.1002/jee.20235.[3] R. S. Adams, S. R. Daly, L. M. Mann, and G. Dall’Alba
slight increase in drowsiness. One participantfelt the video was longer than in actuality, while the other two felt it was shorter than in actuality. Theclinical immersion video (see appendix Table 5) elicited an average level of engagement at 6.33, with twoof the participants beginning to feel bored at around 10 minutes. No participant fell asleep, one felt adrowsiness level of 7 out of 9 while the other two did not experience any drowsiness from watching thevideo. Interestingly, all participants felt that the video was longer than in actuality.Discussion:Due to issues during data acquisition, the EEG statistical analysis was inconclusive despite observingstatistical difference in subjects 2 and 3 (see appendix Table 1). Namely, Subject 2’s
. 5 Resources[1] K. Krippendorff, Content analysis : an introduction to its methodology, 3rd ed. Beverly Hills: Sage Publications, 1980.[2] G. L. Gray, D. Evans, P. Cornwell, F. Costanzo, and B. Self, "The Dynamics Concept Inventory Assessment Test: A Progress Report," in Proceedings of the 2005 American Society for Engineering Education Annual Conference, Portland, OR, 2005.[3] G. L. Gray, D. Evans, P. Cornwell, F. Costanzo, and B. Self, "Toward a Nationwide Dynamics Concept Inventory Assessment Test," in Proceedings of the 2003 American Society for Engineering Education Annual Conference, Nashville, TN, 2003.[4] P. S. Steif and J. A. Dantzler, "A Statics
, et al. (2021, Between Level Up and Game Over: A Systematic Literature Review of Gamification in Education. Sustainability 13(4).[5] L. Sardi, A. Idri, and J. L. Fernández-Alemán, "A systematic review of gamification in e-Health," Journal of Biomedical Informatics, vol. 71, pp. 31-48, 2017/07/01/ 2017.[6] K. Robson, K. Plangger, J. H. Kietzmann, I. McCarthy, and L. Pitt, "Game on: Engaging customers and employees through gamification," Business Horizons, vol. 59, pp. 29-36, 2016/01/01/ 2016.[7] A. Behl, P. Sheorey, A. Pal, A. K. V. Veetil, and S. R. Singh, "Gamification in E- Commerce: A Comprehensive Review of Literature," Journal of Electronic Commerce in Organizations (JECO), vol. 18, pp. 1-16, 2020
ofcognitive ideation. Instead, human designers must generate new objective spaces for AI to exploreand discover logical relationships between parameters that achieve the objectives. In this way, GDrequires inverse thinking from the objective space to the parameter space, while in TD, designersare required to cognitively explore the parameter space to optimize towards the objective(s).Aims and SignificanceDesign paradigms (e.g., TD / PD / GD) each require the human to carry out a unique set of tasks[1], [3], [6], [7], [9] which in turn define design thinking [8], [10], [11]. Thus, each paradigm isaccompanied by a unique design thinking concept. TD requires a designer to engage in traditionaldesign thinking (TDT), PD activates parametric design
Paper ID #36938Teaching IoT in Both Physical and Virtual EnvironmentsProf. James R. Mallory, Rochester Institute of Technology (COE)Edmund Lucas, National Technical Institute for the DeafWilliam Arnold ©American Society for Engineering Education, 2023Teaching IoT in Both Physical and Virtual EnvironmentsAuthors: Arnold, W., Fontaine, J., Griggs, S., Huff, G., Johnson, D., Linares, C., Patel, S.,Reader, J., Roman, J., Sawaqed, Y., Yadav, R., Lucas, E. & Mallory, J. National TechnicalInstitute for the Deaf / Rochester Institute of TechnologyPrimary Division: Computing and Information Technology DivisionSecondary Division: Education