first half of the semester focuses onintroducing combinational and sequential logic circuits. A free web-based circuit simulatorallows students to design a basic CPU, which facilitates the formulation of an instruction set,empowering students to execute machine codes for fundamental operations. In the second half ofthe semester, the curriculum delves into assembly language. Through online simulators, studentsexplore the fetch-decode-execute cycle and gain insights into implementing essential structuressuch as the for-loop and if-else, commonly used in high-level computer languages.IntroductionIn recent years, enrollment in the Computer Science (CS) department has surged dramatically.Consequently, faculty members with backgrounds in Electrical
Paper ID #20421Project-Based Learning Integrating Engineering Technology and Engineer-ingDr. Wesley L. Stone, Western Carolina University Dr. Wes Stone is an associate professor in the Department of Engineering and Technology at Western Carolina University in Cullowhee, NC. He earned his bachelors degree from the University of Texas at Austin, masters degree from Penn State, and PhD from Georgia Tech, all in Mechanical Engineering. His research interests include manufacturing processes and quality techniques. He also serves as the program director for Engineering Technology at WCU.Dr. Hugh Jack P.E., Western Carolina
Paper ID #42504Integrating Precalculus into Calculus II and Its OutcomesDr. Meiqin Li, University of Virginia Dr. Li obtained her Ph.D. in Applied Mathematics from Texas A&M University-College Station in 2017. Dr. Li holds a strong interest in STEM education. For example, she is interest in integrating technologies into classrooms to bolster student success, creating an inclusive and diverse learning environment, and fostering student confidence by redeveloping course curricula and assessment methods, etc. Beyond this, her research intertwines numerical computation, optimization, nonlinear analysis, and data
learning quickly - for example, you might review new curriculum, prep for the lesson, and teach, all within a short period of time. Do you think your development in these areas will be of benefit in the future, either as a student or in your career? ● In our previous conversations, you spoke about the teaching and learning environment in university - and how it can be quite limited and uninspiring in its focus on transmission-based lectures. In contrast, you described your work with (outreach program) as reflecting a broader set of teaching and learning activities, giving you an opportunity to explore subject matter and your understanding of it in different ways. Can you speak a little more to this
2020” and “increase the number offormalized partnerships by 20% by 2020” [6]. The engineering curriculums have an untappedpotential to help in achieving these goals.There are limited studies available in the literature on the effectiveness of service learningpedagogy particularly in engineering courses and programs [3]. Warren (2012) [8] analyzed 11research studies on the effectiveness of service learning in improving learning in a variety of fields,including communication, English, sociology, psychology, political science, and pharmacy. Thesestudies utilized a wide variety of tools to measure student learning. The results indicated thatregardless of measurement tools, service learning improved student learning. This type of study iseven more
is a Professor and Chair of Industrial, Manufacturing and Systems Engineering at UTEP. His research focuses on the computational intelligence, data mining, bio- informatics and advanced manu- facturing. Dr. Tseng published in many refereed journals such as IEEE Transactions, IIE Transaction, Journal of Manufacturing Systems and others. He has been serving as a principle investigator of many research projects, funded by NSF, NASA, DoEd, KSEF and LMC. He is currently serving as an editor of Journal of Computer Standards & Interfaces. c American Society for Engineering Education, 2017 INTEGRATION OF ADDITIVE MANUFACTURING TECHNOLOGY IN CURRICULA TO ENHANCE CONCEPT BASED LEARNINGAbstract
students at Rochester Institute of Technology and broughtthem very well up to speed which resulted in successful research (publications in top-tierelectrical and computer engineering IEEE Transactions journals for the case study of side-channel analysis attacks and reliability).We have had the following goals in such integration: (a) Exposing the challenges of deeply-embedded system security education; (b) Hardware and software secure system co-design teaching and research integration (in previous work, theory and practice are combined for such purpose: A co-design course applying symmetric key ciphers has been presented6, a helicopter-like robot motion control has been implemented7, and co-design as an emerging discipline in
campus has been successful at attracting and retainingwomen in engineering, we examined our program and enrollment trends, conducted interviews,and surveyed faculty, students and alumni. Based on this data, key aspects of the curriculum thatseem to effectively attract and retain women include the flexibility of the curriculum, a focus ondesign and innovation, a collaborative and friendly atmosphere, the presence of female peermentors, an emphasis on the liberal arts, and a focus on real-world projects.Data from surveys, interviews and courses are shared so that faculty and administrators at othercampuses may learn about different strategies that could be adapted at their own campuses toincrease gender diversity.BackgroundDespite continued
Virginia. She has a BS in Chemical Engineering from The Ohio State University .Miss Sarah Catherine Lilly, California State University, Channel Islands Sarah Lilly is a PhD student in the Department of Curriculum, Instruction and Special Education at the University of Virginia. She holds a B.S. in Mathematics and English and an M.A.Ed. in Secondary Education from The College of William and Mary. Her rese ©American Society for Engineering Education, 2023 Integrating technical and social issues in engineering education: A justice-oriented mindsetAbstractThe problem-solving skills of engineers are necessary to address modern, global, sociotechnicalissues (e.g
Paper ID #41199Board 69: Learning Sustainable Development Through Integrative DesignProcess (a Case Study)Dr. Xi Wang, Drexel University Xi Wang is an Assistant Teaching Professor of Construction Management at Drexel University. She received her Ph.D. and M.Eng both in Civil Engineering, from the University of Kentucky and Auburn University. She is licensed as a Professional Engineer and LEED Green Associate. She is teaching a range of courses in construction management and will be assisting capstone design projects that directly serve regional construction firms. Her research interests include technology adoption in
thatinformed this study were: 1) What are the elements applied in a culturally responsive trainingmodel within a summer intervention program? 2) How does the implementation of a culturallyresponsive training model prepare program mentors to engage with culturally diverse students inintervention programs? 3) What lessons learned can be translated to similar interventionprograms? Relevant LiteratureSTEM Intervention ProgramsSTEM intervention programs (SIPs) integrate student culture and curriculum by designinginterventions that focus on aiding the non-dominant cultural groups in “catching up” [11]. SIPsare structured in many ways, they vary in their purpose, curriculum focus, and academic level;regardless, SIPs work
Paper ID #33372The Benefits of an Engineering Field Trip for Women StudentsDr. Kerry Meyers, University of Notre Dame Dr. Kerry Meyers holds a Ph.D. in Engineering Education (B.S. & M.S. Mechanical Engineering) and is specifically focused on programs that influence student’s experience, affect retention rates, and the factors that determine the overall long term success of students entering an engineering program. She is the Assistant Dean for Student Development in the College of Engineering at the University of Notre Dame. She is committed to the betterment of the undergraduate curriculum and is still actively
for crowd- sourcing bicycle and pedestrian conflict data, transportation public health performance measures, policy and infrastructure improvements resulting from bicycle and pedestrian fatality crashes, linking physi- cal activity levels to travel modes, transportation mobility for the transportation disadvantaged, and the development of planning and transit performance measures for access to opportunities, integrating sus- tainability into the engineering curriculum and creating an engineering sustainability minor. He has published several articles in the Transportation Research Record, other journals and conferences on these and other related topics. He is currently serving on the Transportation Research Board
critical thinking abilities they needto responsibly navigate and contribute to an AI-driven world.1. IntroductionArtificial Intelligence (AI) has become a transformative force across industries, redefining theworkforce and global problem-solving approaches, from healthcare innovations to environmentalsustainability efforts [1], [2]. Just like integrating computer science understanding and skills intothe curriculum has gained momentum in recent years, so is true for AI. Students need to betterunderstand how the technology works and how to use it properly. Despite the need for studentsto understand how AI works, disparities in Kindergarten through 12th grade (K-12) AI educationpersist. This leaves many students unprepared to navigate an AI
changes to the department curriculum and course structures,departmental interactions and community-building efforts, departmental mentoring efforts,student recruitment, department recruiting efforts, and departmental partnerships withcommunity colleges.Due to the overlapping nature of the individual program goals and the department’s efforts tocreate broad change, adhering to the Program Evaluation Standards of utility, feasibility,propriety, and accuracy (Yarbrough et al., 2011) necessitated taking a comprehensive evaluationapproach. This approach would enable an understanding of not just individual programs, but alsoallow us to gain an understanding of the ways in which the department was, and was not,changing as a whole.Researchers have noted
Illinois and California, directing research, business develop- ment, operations, quality assurance, sales and marketing. Ann is a licensed acupuncturist, holds an MS in Traditional Chinese Medicine and a BS in Nutrition from the Midwest College of Oriental Medicine. In 2010, Ann co-founded Point of Health Acupuncture and owns Birdhouse Acupuncture, both health and wellness businesses. Ann received her BS in Biology from the University of Illinois at Chicago. c American Society for Engineering Education, 2019 Optimizing the Integration of Computational Thinking into a STEM Curriculum for a Minority Girls’ After-School Program (prek-12, Work-in-Process-Diversity
engineering summer school in an industrial setting,” European Journal of Engineering Education, vol. 34, no. 6, pp. 511-526, 2009.[9] M. C. lves, “University-Industry Partnership for Global Education: Implementing and Integrating an Engineering International Internship into the Engineering Curriculum,” Proceedings of the 2015 ASEE International Forum, Seattle, Washington, June 2015. https://peer.asee.org/17162[10] S. Abanteriba, “Development of strategic international industry links to promote undergraduate vocational training and postgraduate research programmes,” European Journal of Engineering Education, vol. 31, no. 3, pp. 283-301, 2006.[11] For more information on the LASER foundation, see https
Paper ID #41070Board 221: CAREER: Disrupting the Status Quo Regarding Who Gets to bean Engineer - Exploring the Intent-to-Impact Gap for Rectifying InequityDr. Jeremi S London, Vanderbilt University Dr. Jeremi London is an Assistant Provost for Academic Opportunities and Belonging, and an Associate Professor of Practice of Mechanical Engineering at Vanderbilt University. London is a mixed methods researcher with interests in research impact and organizational change that promotes equity.Dr. Brianna Benedict McIntyre, National Action Council for Minorities in Engineering Dr. Brianna Benedict McIntyre recently joined the
Paper ID #12659LEGO-Based Underwater Robotics as a Vehicle for Science and EngineeringLearning (Curriculum Exchange)Ms. Mercedes M McKay, Stevens Institute of Technology (SES) Mercedes McKay is Deputy Director of the Center for Innovation in Engineering and Science Education (CIESE) at Stevens Institute of Technology. She has led several national and statewide K-14 teacher professional development and curriculum development programs in STEM education. McKay is co- PI and Project Director for the NSF-funded Build IT Scale Up project to develop and disseminate an innovative underwater robotics curriculum for middle and high
, Participation. Professional Learning1. IntroductionThis research paper provides findings from implementing the Professional Development or PDmodel of the NSF-awarded project “Let’s Talk Code”. The goal of these PD workshops was toincrease teacher’s confidence and capability in integrating culturally relevant computing andcoding experiences within their curriculum and instruction. Here, we set our focus on the impactof the PD. Through the PD, teachers were engaged in computing and coding professionaldevelopment via Code.org. The teachers were then asked to apply what they learned aboutcoding by developing and implementing culturally relevant computing and coding experiencesfor their students. Here, we share early findings from three of the teacher
from data collected at the mastery levelwill generate sets of action items which feedback to the program for improvement. Even withdata collected only at the mastery level, for instance at a large university, the amount of datacollected will still be an issue for a timely evaluation. Figure 3 shows a commonly used processof how the GR assessment model is implemented [9, 15]. Figure 2: Sample curriculum outcomes-mapping matrix Figure 3: The GR assessment processSince there are vast amounts of data collected even for the mastery level courses, a sample ofdata, 10% for example, are actually being assessed by an independent multi-rater team. Theindependent raters are in general selected to be
Program, College of Engineering and Applied Science, Uni-versity of Colorado at Boulder Nick Stites is an engineer with the Integrated Teaching and Learning Program at the University of Col- Page 26.405.1 orado Boulder. He also serves as an adjunct instructor for the General Engineering Plus program and the Department of Mechanical Engineering. Nick holds a BS and MS in Mechanical Engineering and is currently pursuing a PhD in engineering education. His research interests include how technology can enhance teaching and learning. c American Society for Engineering Education, 2015
drawing is generated from the3D model. This paper presents the experiences and challenges of using MBD technology in anundergraduate manufacturing engineering curriculum for capturing design function andmanufacturing requirements through GD&T. It reviews a junior level Design for Manufacturecourse, where advanced concepts in GD&T are introduced, and where students are required todemonstrate their grasp of these concepts by utilizing MBD. To facilitate this methodology,students receive instruction in the use of CATIA’s Functional Tolerancing and Annotation (FTA)workbench which they are required to use in their assignments and project work. In addition toallowing the integration of annotation with the 3D model, the FTA workbench provides
related to the conception and institutionalization of a minor in engaged engineering. c American Society for Engineering Education, 2020 Building Community Engaged Programs in Curriculum - A Short Review of Brazilian ApproachesIntroductionEngineering schools have established a variety of ways of how community engagementprograms (CEP) are built into curriculum [1]. But what are the conditions for establishing CEP inengineering schools? And how can we explain the different ways in which CEP programsthrive? From the perspective of the social systems theory, there is an interplay in the dimensionsof constraints (structural coercion), free choices, and contingencies, allowing actors a set ofoptions
present and future. Additionally, the underrepresentation of females in the areas of science, technology, engineering, and mathematics (STEM) has been well documented [2]. It is crucial for girls who aspire to STEM careers to have access to learning environments that engage them in scientific and mathematical practices and that support a growth mindset. Including an art component with the integration of science, technology, engineering, and mathematics (STEAM) engages students in authentic problemsolving through creative design experiences [3]. Objectives In partnership with a National Science Foundation (NSF) funded Research Experience for Teachers (RET) program at the University of Washington’s Center for Sensorimotor Neural Engineering
continual (but not redundant) exposure to these topics throughout their curriculum. It is not adequate to only incorporate interventions in the first year introductory course and senior design, but optimally in at least one course every semester. This requires integrating diversity and inclusion topics in technical courses and, when possible, providing examples of the importance of diversity and inclusion in engineering design. This work‐in‐progress takes an incremental approach by working with amenable faculty, as well as demonstrating to additional faculty the value added to the curriculum.Weber and Atadero. 2020 Annual CoNECD Conference. 5
, international construction, project delivery systems, statistical methods for construction engineers, project management practices, and engineering educational research methods. He is an active member of the American Society for Engineering Education and American Society of Civil Engineers, Construction Research Council of Construction Institute, ASCE. Page 26.352.1 c American Society for Engineering Education, 2015 Closing Achievement Gaps using the Green-BIM Teaching Method in Construction Education Curriculum Jin-Lee Kim
plastics and environmental consideration in materials selection for production design, the impact of technology paired with active learning pedagogies on student learning, and effective strategies for increasing gender diversity in STEM disciplines. c American Society for Engineering Education, 2016 Transforming Curriculum for Workforce Development in Green Plastics Manufacturing Technology (GPMT) for STEM: Lesson LearnedIntroductionManufacturing is integrally tied to advancements in materials science and engineering. "GreenPlastics Manufacturing Technology" (GPMT) is an emerging discipline that encompasses arange of activities in science and technology, from the research and development of non
in the engineering curriculum for an electric circuitcourse that combines both analog and digital circuits, this section addresses related literature inthe field of engineering education. A number of recent papers address improved methods ofinstruction for a course on electric circuits. Skromme, et al. have described the latestdevelopments of a computer-based tutorial program involving a step-based approach to assiststudents in the learning key concepts of circuit analysis, resulting in significant gains for studentsover doing conventional textbook problems.3 Morrow recently reported on experience withimplementing a blended-learning model involving more active learning, technology-enhancedexercises for an electric circuit course, resulting
Paper ID #39511Board 91: Work-in-Progress: A Systematic Gap Analysis of the AustralianPower Engineering CurriculumMiss Nisaka Munasinghe, University of New South Wales Nisaka Munasinghe is an enthusiastic undergraduate student at the University of New South Wales. She will be graduating with a Bachelor of Electrical Engineering (Hons), 2023, with her thesis project present- ing research for improvements to the Australian Power Engineering Curriculum. Since 2020, she has been working in construction as a cadet engineer with Sydney Trains, helping deliver and commission railway signalling projects for the NSW transport