Cybersecurity.2.0 BackgroundThe two-fold goal of the NSF Division of Undergraduate Education (DUE) S-STEM fundedAttracting and Cultivating Cybersecurity Experts and Scholars through Scholarships (ACCESS)program is: (1) to increase cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need (including women andminorities) and (2) to generate knowledge about academic success, retention, persistence,graduation, and career pathways of these students to improve the education of futureCybersecurity-related STEM workers. Specifically, ACCESS aims to contribute towardsaddressing the tremendous governmental and industry need for highly skilled cybersecurityexperts by addressing the following
for engineering majors, and leading career and academic enrichment workshops. Ms. Romanella is Co-PI for the SPARK Scholars Program, an NSF S-STEM funded project to increase the recruitment and retention of female undergraduates in engineering and computer science. She also serves as the director of the Collaborative Learning Center, an academic support center for STEM majors. She is the adviser for the STEM Living and Learning Community and is the webmaster and social media director for several Texas State University websites. Ms. Romanella is committed to creating opportunities for women, men, and people of all genders and backgrounds to participate in higher education and grow the scientific and technical
Recruitment, Mentoring and Retention through the Aerospace and Industrial Engineering (ASPIRE) Scholarship Program1. IntroductionThe overarching goal of the Aerospace and Industrial Engineering (ASPIRE) Scholarshipprogram is to improve recruitment and retention of aerospace engineering (AE) and industrial(IE) engineering students. With support from the NSF S-STEM program, the ASPIRE programprovides scholarships to academically talented, full-time AE and IE students with demonstratedfinancial need. The ASPIRE program enhances the educational experience of ASPIRE studentsthrough mentoring and networking events. The objectives of the ASPIRE program are to: • Prepare students for the workforce. • Provide educational
in Environmental Engineering and Water Resources Management(USE4WRM), an S-STEM grant is to increase the recruitment and retention of the academicallytalented students majoring in ENE and WRM programs, but also those who are in need offinancial assistance through scholarships and other required academic support. USE4WRM aimsto ensure the contribution of the workforce from the disadvantaged communities to thesespecialized fields. It is designed to support the qualified students in academic performance,persistence, graduation, job placement, and entry into graduate schools.The USE4WRM program will recruit student cohorts of 14 high school students ( 7 males and 7females), broken into the ENE (8 students) and WRM (6 Students) programs in its
on our strongpower program with a high national and international reputation in education and research andusing a grant funding from the National Science Foundation’s Scholarships in STEM (S-STEM)program, we establish a scholarship program for recruitment, retention, and mentoring of futurepower engineering leaders in electric energy and smart grid. Our specific objectives are toincrease the number of students in the following groups in power engineering by 50%: (i)Bachelor’s, (ii) Master’s, (iii) underrepresented minorities, and (iv) women, by providingopportunities for lower division students, community college students, and four-year universitystudents to study in Bachelor’s and Master’s degrees.IntroductionIt is well recognized
relevant engineering technology program. Both first-year andtransfer students will be required to submit an essay to describe their career goals and why theyshould be considered for the S STEM scholarship. Financial need of both eligible first-yearstudents and transfer students will be verified using the US Department of Education’s rules forneed-based Federal financial aid. Michigan Tech’s Financial Aid Office will utilize the studentinformation data warehouse to verify student eligibility during this phase.A total of 41 students applied for acceptance into the ETS IMPRESS program. There were 17students deemed eligible (financial need of at least $4500), with 9 (5 freshmen and 4 transferstudents) students awarded program entrance based upon
©American Society for Engineering Education, 2024 A layered mentoring approach for engineering excellence.Abstract:The Alternative Pathways to Excellence (APEX) Program at the University of St. Thomas,funded by NSF as an S-STEM Track 2 project, aims to solidify transfer pathways, and assistEngineering students by providing financial, academic, and practical support. The successfulintegration of transfer students into engineering programs presents a unique set of challenges andopportunities for higher education institutions. The APEX program provides a comprehensivesupport system, including structured and informal mentoring, guidance for both academics andextracurricular activities, and collaborative teamwork experiences. The program is
Paper ID #42367Board 350: Preliminary Results from Community Colleges Collaborating inSTEMDr. Melanie B Butler, Mount St. Mary’s University Dr. Melanie Butler is the Principal Investigator for C3STEM: Community Colleges Collaborating in STEM, which is an S-STEM Track 2 National Science Foundation grant that has established pre- and post-transfer support, co-curricular, and career development activities for supporting recruitment, retention, and student success in STEM. She is a professor of mathematics in the Department of Mathematics and Computer Science at Mount St. Mary’s University.Rosina BolenDINA YAGODICH
Department of Technology and Society. She is currently the Assistant Director of STEM Smart programs, which include programs S-STEM ASSETS, LSAMP, and NASA NY Space Grant. Lauren has had the opportunity to participate in many professional development programs, such as the first cohort of the Research Foundation Leadership Academy, and Research Foundation Mentoring Program. Lauren received her Master of Arts in Higher Education Ad- ministration from Stony Brook University in May 2017. Her current research analyzes the gender equity in higher education, with a focus of females in STEM. With her research background, Lauren is a Women in Science and Engineering (WISE) affiliated member, and instructs the course, Society and
mainprogrammatic components aimed at improving the engagement, retention, and graduation ofstudents underrepresented in engineering. These components include: “intrusive” academicadvising and support services, an intensive first-year academic curriculum, community-building(including pre-matriculation summer programs), career awareness and vision, facultymentorship, NSF S-STEM scholarships, and second-year support. Successful implementation ofthese activities is intended to produce two main long-term outcomes: a six-year graduation rateof 60%-75% for Redshirt students, and increased rates of enrollment and graduation of Pell-eligible, URM, and women students in engineering at participating universities. In the first yearof the grant (AY 16-17), SSPs
Engineering Education, 2015 Development and Implementation of a Pathway Assessment Model for the ASPIRE ProgramAbstractThe University of New Haven received S-STEM funding for A Scholarship Program to IncreaseRetention in Engineering (ASPIRE): Improving Work-Study-Life Balance. The goal of the 5 yearprogram is to improve retention, particularly in the sophomore and junior years, for engineeringstudents who show academic potential but are at risk of not completing their studies due tofinancial concerns and/or life-work-study balance issues. The ASPIRE program aims toaccomplish this by: providing scholarships for sophomore and junior level matriculated studentsbased on both financial need and merit; recruiting and
Paper ID #41096Board 219: C6-LSAMP - Building Bridges to the BaccalaureateDominic J Dal Bello, Allan Hancock College Dom Dal Bello is Professor of Engineering at Allan Hancock College (AHC), a California community college between UC Santa Barbara and Cal Poly San Luis Obispo. At AHC, he is Department Chair of Mathematical Sciences, Faculty Advisor of MESA (the Mathematics, Engineering, Science Achievement Program), and Principal/Co-Principal Investigator of several National Science Foundation projects (S-STEM, LSAMP, IUSE). In ASEE, he is chair of the Two-Year College Division, and Vice-Chair/Community Colleges of the
©American Society for Engineering Education, 2023 Leveraging Innovation and Optimizing Nurturing in STEM: Investigating role identities of low-income engineering students prior to their first semester of college (NSF S-STEM #2130022)The purpose of the Leveraging Innovation and Optimizing Nurturing in STEM Program (NSF S-STEM #2130022, known locally as LION STEM) is to support the retention and graduation ofhigh-achieving, low-income engineering scholars with demonstrated financial need at Penn StateBerks, a regional campus of The Pennsylvania State University. The LION STEM programbuilds upon the Sustainable Bridges from Campus-to-Campus project (NSF IUSE #1525367)which formed the
are eager toanalyze the preliminary results for the continuous improvement of the project. It is noted that PIswere able to have three scholars accepted for participating in the AAAS S-STEM ScholarsMeeting that was held on September 14-16, 2023, in Washington, DC. In the following, some ofthe activities implemented in this project along with the lessons learned are described:Recruitment. PIs examined different recruitment strategies and learned important lessons:• The full-time enrollment requirement was changed to a minimum of 8 credit hours per semester to allow students more flexibility as most of them already have other work and familial responsivities.• The minimum number of credit hours to transfer at the time of application was
recognized for her teaching, advising, service, and research and as an Exemplary Faculty Member for Excellence in Diversity, Equity, and Inclusion. ©American Society for Engineering Education, 2024 Supporting students’ success in the cybersecurity field: Accomplishments and lessons learned by the ACCESS projectAbstractThe NSF S-STEM funded project “Attracting and Cultivating Cybersecurity Experts andScholars through Scholarships” (ACCESS) has a goal to increase the number of high-achievingundergraduate students with demonstrated financial need who complete a degree in thecybersecurity field. This goal contributes towards addressing the huge unmet need forcybersecurity experts. This paper
had been highly rated at the time of original review. Inpart because of this and in part because it is an important part of proposal review, our reviewerswere asked to closely read the current program description and calls for proposals and evaluatethe proposals with respect to how well they matched the current call. This allowed for apotentially greater range of quality evaluations, with the understanding that there would be amismatch between the current call and the call the original proposals responded to. The callsused in this training were the Preparing Future Engineers: Research Initiation in EngineeringFormation (PRF: RIEF), Scholarships in Science, Technology, Engineering & Math (S-STEM),and the Faculty Early Career Development
certainty. Whereas the students in our previous study hadself-developed this “connecting” skill, our program provides a formal platform forlow-income students to learn and practice those connecting skills at the graduate level.This will allow us to investigate through pre- and post-surveys whether “connecting”skills can be developed through mentorship and whether developed connecting skillsenhance their self-efficacy, STEM identities, and persistence beliefs.This poster shares the results from student surveys completed at the beginning of our firstacademic year of the S-STEM program, reflecting on their undergraduate experiences.Specifically, we highlight the particular FOK held by our students as they enteredgraduate school from engineering and
component to the program, community college transfer students will likely continue tohave varying levels of graduation rates and graduation successes. Programs expanded from thisstudy would benefit from the basic structure, but require additional expansions into moreelaborate financial package designs.References[1] "Tennessee Promise." https://www.tn.gov/tnpromise.html (accessed 02/24/23.[2] R. M. Ellestad, D. J. Keffer, J. Retherford, C. Wetteland, M. Kocak, and T. Griffin, "NSF S-STEM: Transfer Success Co-Design for Engineering Disciplines (TranSCEnD)," in 2019 ASEE Annual Conference & Exposition, Tampa, FL, 2019.[3] V. Tinto, Leaving college: Rethinking the causes and cures of student attrition. ERIC, 1987.[4
Minority Participa- tion (SUNY LSAMP) and the $1 million S-STEM Scholarship Academic and Social STEM Excellence for Transfer Students (ASSETS) programs. These NSF sponsored programs help low-income, and under- represented minority students persist and succeed in STEM majors and careers. Dr. Woodson received his B.S.E in electrical engineering from Princeton University and his Ph.D. in Public Policy for the Georgia Institute of Technology (Georgia Tech).Ms. Rachel Faye Perlman, Stony Brook University Rachel is a PhD candidate in the Interdepartmental Doctoral Program in Anthropological Sciences at Stony Brook University. Outside of her research, she is devoted to accessibility in STEM higher educa- tion. She has
Students1.0 IntroductionThe Academy of Engineering Success (AcES) program, founded in 2012 and operating withNSF S-STEM funding since 2016, implements literature-based strategies to support and retainunderprepared (non-calculus-ready) and underrepresented first-time, full-time undergraduatestudents in engineering with the goals of increasing the number of graduating engineers anddiversifying the engineering workforce [1], [2]. A total of 71 students, including 21 studentssupported by renewable S-STEM scholarships, participated in the AcES program between 2016and 2019 in the Fundamentals of Engineering Program of the Benjamin M. Statler College ofEngineering and Mineral Resources at West Virginia University, a large R1 institution in themid-Atlantic
examining predictivevalidity of the RESP diagnostic exam for an array of outcomes including success within theRESP program itself.AcknowledgementsThis RESP program is partially supported by an NSF S-STEM program grant (#1565023). Othersignificant funding comes from Rice University. The research component of this program ispartially funded by the S-STEM grant, and partially funded by Rice University and the ChaoFoundation.References[1] Ackerman, P. L., Kanfer, R., & Beier, M. E. (2013). Trait complex, cognitive ability, and domain knowledge predictors of baccalaureate success, STEM persistence, and gender differences. Journal of Educational Psychology, 105(3), 911–927. https://doi.org/10.1037/a0032338[2] Richardson, M
experiences focused on improving retention and graduation rate.Dr. Hossein Rahemi, Vaughn College of Aeronautics & Technology Dr. Hossein Rahemi is a professor and department chair of Engineering and Technology at Vaughn Col- lege of Aeronautics & Technology. He is the author of two books, Vaughn College Journal of Engineering and Technology (VCJET), numerous conference papers in the areas of solid mechanics, computational mechanics, vibration analysis, fracture mechanics and reliability analysis. He is also a principle investi- gator for the NSF S-STEM grant and the HIS-STEM grant and a student adviser for a number of technical papers in the areas of mechanics, robotics and industrial automation.Dr. Yougashwar
preparation for STEM is weaker than those of their peers.Ms. Megan McSpedon, Rice University Megan McSpedon is the Associate Director of the Rice Emerging Scholars Program. She has been with the program since it was founded in 2012. Megan received a B.A. in English from Rice University.Dr. Matthew Taylor c American Society for Engineering Education, 2019 STEM Bridge Program Participation Predicts First and Second Semester Math PerformanceAbstractTo combat math underperformance among incoming STEM majors, Rice University designed asummer bridge program with National Science Foundation (NSF) S-STEM funding that includedan intensive calculus course. Students invited to
control. Dr. Rodriguez has given over 70 invited presentations - 13 plenary - at international and national forums, conferences and corporations. Since 1994, he has directed an extensive engineering mentoring-research academic success and professional development (ASAP) program that has served over 500 students. These efforts have been supported by NSF STEP, S-STEM, and CSEM grants as well as industry. Dr. Rodriguez’ research inter- ests include: control of nonlinear distributed parameter, and sampled-data systems; modeling, simulation, animation, and real-time control (MoSART) of Flexible Autonomous Machines operating in an uncertain Environment (FAME); design and control of micro-air vehicles (MAVs), control of bio
culturewith a focus on better supporting traditionally underrepresented students. Subsequent researchwill explore how student participation in these types of engagement activities correlate to thedevelopment of an inclusive makerspace and engineering education culture.Acknowledgement – This material is based upon work supported by the National ScienceFoundation S-STEM program under Grant No. 1834139. Any opinions, findings, andconclusions or recommendations expressed in this material are those of the authors and do notnecessarily reflect the views of the National Science Foundation.References[1] M. Galaleldin, F. Bouchard, H. Anis and C. Lague, "The impact of makerspaces on engineering education," in Proceedings of the Canadian Engineering
Paper ID #47786BOARD # 391: LSAMP/B2B: C6-LSAMP – Reflections on C6’s Fall UndergraduateResearch SymposiumProf. Dominic J Dal Bello, Allan Hancock College Dom Dal Bello is Professor of Engineering at Allan Hancock College (AHC), a California community college between UC Santa Barbara and Cal Poly San Luis Obispo. At AHC, he is Department Chair of Mathematical Sciences, Faculty Advisor of MESA (the Mathematics, Engineering, Science Achievement Program), has served as Principal/Co-Principal Investigator of several National Science Foundation projects (S-STEM, LSAMP, IUSE). In ASEE, he is chair of the Two-Year College
-generations (first-gen), low socioeconomic status (SES) students, ruralstudents, and more, even though they intend to support those students. Recruitment is critical toreach and convince underserved students to enroll in those programs to broaden participation inengineering. Limited literature focuses on recruitment practices and barriers in those programs[2-3]. Difficulties were reported in identifying effective recruitment strategies. The BCSER PIled an engineering summer bridge program formerly funded by NSF Scholarships in ScienceTechnology Engineering and Math (S-STEM) program and observed the recruitment challengesafter federal grant phased out in her own bridge program and other similar ones that lack federalfunding. The purpose of this BCSER
participants, ten have transferred intoengineering majors at four-year universities (43%), two have transferred into other STEM majors(9%), eight continue to take transfer preparatory courses at CCC (35%), and the educationalstatus of three students is unknown (13%). Anecdotally, several of the transferred students haveindicated that they continued to seek out research opportunities after transferring.AcknowledgementsThis material is based on work supported by the National Science Foundation S-STEM GrantNumber 1564587 and by the University of California at Davis AvenueE program.References[1] L. Fleming, K. Engerman, and D. Williams, “Why Students Leave Engineering: TheUnexpected Bond,” in 2006 Annual Conference & Exposition, Chicago, Illinois, USA
mechanicalengineering, civil and environmental engineering, biomedical engineering, and electrical andcomputer engineering created a Scholarship Program for Undergraduate Retention and Success(SPURS) with the support of NSF’s S-STEM initiative. The proposed program consists of anintegrated approach to increase the number and graduation rate of undergraduate students whoenroll in the College of Engineering. As financial constraints are a major disincentive forstudents to enroll and persist in higher education, this project combines scholarships with otherforms of academic and professional support to ensure student persistence and completion of aB.S. Engineering degree. Providing resources and educational opportunities for undergraduateengineering students will
this endeavor, common engineering tools can be used to streamline thedevelopment, design, and evolution of these student-focused programs.This project illustrations the adaptation of one engineering technique used in human-centereddesign, the creation of personas, to help in the design and evolution of a need-based scholarshipprogram with professional development requirements.BackgroundCampbell University’s School of Engineering is able to offer students need-based scholarshipsthrough an NSF S-STEM grant. As part of this program, students are expected to take part in avariety of professional development activities including mentoring, industry tours, tutoring, andinternship preparation assistance. These activities were chosen as they are noted