(Lichtenstein & Plowman, 2009;Sullivan & Pines, 2016). It is a shared discipline of collective action. As participants follow thesesimple rules, new interactions take place and new outcomes emerge. Using simple, but not easyquestions, participants develop both a shared outcome and a project to move toward theiroutcome. The project represents a short-term experiment. Participants learn whether they canmove toward their shared outcome through the collective action they design. The process isiterative: as they learn, they move forward to complete some projects, adjust others and keepgoing, and take on new projects to reach their identified strategic outcome(s). Given thealignment between this approach and the complex nature of the university
-term, this would improve women representation in the male-dominated engineering and technology careers.References 1. T. McKoy, M. Hammond, C. Armwood, and S. K. Hargrove, “Persistence of African American Females in Engineering: The Identity Factor,” [Online]. Available http://zone2.asee.org/papers/proceedings/3/200.pdf [Accessed February 3, 2019] 2. National Coalition for Women and Girls in Education “Women and STEM: Preparing for a technology-driven economy, Title IX at 45: Advancing opportunity through equality in education,” Washington, DC: National Coalition for Women and Girls in Education, 2017, [Online]. Available https://www.ncwge.org/TitleIX45/Women%20and%20STEM.pdf [Accessed June 20, 2018
theworkforce [6]. There are many explanations of individual excellence and entrepreneurialmindset [7,8, 9] and multiple studies about engineering students [10,11,12] with an emphasison a high need for achievement and potential for break-through innovation [13]. Since the late1990’s engineers and designers have been exploring moods and feelings and their connectionto better solutions [14]. And while research links entrepreneurial status to personality theory[15] and personality to leadership [16], few studies focus on the impact of emotion oninnovative success. This paper aims to begin filling that gap with a preliminary experiment toshow how students experience a story of innovation. The experiment is inspired by Radcliffe President Mattina
Paper ID #28670Brazilian Grassroots Engineer’s Education: Achievements, Flaws, andChallengesDr. Cristiano Cordeiro Cruz, Aeronautics Technological Institute I currently develop a post-doctorate research at the Aeronautics Technological Institute (ITA) with a schol- arship from FAPESP (#2018/20563-3). I hold a PhD degree in Philosophy (University of S˜ao Paulo, 2017), a bachelor degree in Philosophy (Jesuit Faculty of Philosophy and Theology, 2008), a master degree in Electrical Engineering (University of Campinas, 2002), and a bachelor degree in Electrical Engineering (University of Campinas, 1999). My research area
shik’éí dóó shidine’é . Shí éí Melissa ******* yinishyé. Bééshbichʼahii nishłį́.Hashk’aan Bit'ahnii bashishchiin. Bééshbichʼahii dashicheii. Tódích'ii'nii dashinalí. Ákót’éegodiné asdzáán nishłį́. Ahéhee’.”Do you feel you belong in the Environmental Engineering Department? If so, why, if not why? “I think there are issues in any program, but I really have enjoyed the engineeringprogram so far. Engineering is not easy in any sense. The environmental engineering departmentit self is small but that [i]s one of my favorite things about it. I think we have credible staff thatknow their filed very well. Some instructors don't have the best class setup, but I assume alldepartment[s] have [a] class like that. I want to go in water focused
.’s fourteen leadership competenciesinclude2: initiative (assess risk and take initiative to create a vision/course of action), decision-making (make data-informed and risk-informed decisions about your course of action),responsibility and urgency to deliver (commitment to on-time deliverables), resourcefulness (getthe job done with passion, discipline, intensity and flexibility), ethical actions and integrity(courageously adhere to ethical standards), trust and loyalty (instil trust in your team byempowering members), courage (face difficult actions head-on), vision (create compellingimages of the future), realizing the vision (design processes to move from abstraction toimplementation), inquiry (listen to others and recognize that their
, including: Please first indicate the amount you consulted with each of the groups below and the degree to which they were resistant or supportive of your decision to pursue a PhD. Please indicate how important each of these factors was in your decision to attend to graduate school prior to enrolling. Please indicate how much you used each of the following sources of information when you were selecting a PhD program. Please rate how important each type of information was when selecting a PhD program: Did you already know the topic of your dissertation work prior to beginning your PhD? Did you already know which professor(s) you wanted to work with prior to your PhD?Returners considered numerous factors
National Science Foundation Graduate Research Fellow. He received his B.S. in Civil Engineering in 2011 with a minor in philosophy and his M. S. in Civil Engineering in 2015. His research focuses on understanding engineers’ core values, dispositions, and worldviews. His dissertation focuses on conceptualizations, the importance of, and methods to teach empathy within engineering. He is currently the Education Director for Engineers for a Sustainable World and an assistant editor for Engineering Studies.Mr. Paul D. Mathis, Purdue University, West Lafayette Engineering Education PhD undergraduate student at Purdue University. Previously a high school educa- tor for six years with a masters in education curriculum and BS
surveys were administered at the beginning, middle, and end of the semesterto generate paired data used to investigate trends over time (Figure 2). Each survey took less than20 minutes to complete and gathered demographic information including age, genderidentification, race/ethnicity, and intended major(s)/minor(s). Survey 1 and Survey 3 consisted offour parts: self-ranking of technical skills competency (beginner, intermediate, advanced, orexpert), self-ranking of confidence in essential parts of the engineering design process using a five-point Likert scale (Figure 3), degree of agreement with statements related to general engineeringself-efficacy using a five-point Likert scale (Figure 4), and open-ended questions related to thosetopics. The
mentioned areas that allowed opportunities to be inclusive. Inside theclassroom, there were opportunities to create an inclusive environment by how the educatorsinteracted with students and how they conducted themselves when students were present andteaching was in action. Finally, educators also talked about what things they thought about orconsidered (mindsets), similar to Integrity of practice, in that educators had a reason for theirpractices [4] when doing any preparation or working with students. Practices are found in Table1 with the following codes: ● CS- Inside Classroom- with Students ● CE- Inside Classroom- by Educators ● OC- Outside the Classroom ● IP- Integrity
administered. Each survey took approximately 15 minutes tocomplete. Validated constructs were used when possible. Specifically, the “teamwork andcollaboration skills” and “intent to persist” constructs demonstrated good internal consistencywhen previously validated in middle school samples, with Cronbach’s alphas of 0.88 and 0.86,respectively [7], [21]. Table 1 provides further information on the subscales used in the pre-postsurvey.Table 1: Pre-Post Survey Subscales Number Subscale Source of Items Example Item(s) Response Format “How confident do you feel designing a prototype 4
: 10.17226/25568.[2] T. Weiston-Serdan and B. Sánchez, Critical Mentoring: A Practical Guide, 1st ed. New York: Routledge, 2023. doi: 10.4324/9781003443872.[3] C. N. Baker, “Under-represented college students and extracurricular involvement: the effects of various student organizations on academic performance,” Soc Psychol Educ, vol. 11, no. 3, pp. 273–298, Aug. 2008, doi: 10.1007/s11218-007-9050-y.[4] H. Arksey and L. O’Malley, “Scoping studies: towards a methodological framework,” International Journal of Social Research Methodology, vol. 8, no. 1, pp. 19–32, Feb. 2005, doi: 10.1080/1364557032000119616.[5] K. Fernandez, A. G. Buhler, and S. M. Rivera-Jimenez, “Methods for Conducting a Scoping Literature Review on Institutional
Performance in the First Two Years of Engineering,” in 2016 ASEE Annual Conference & Exposition Proceedings, New Orleans, Louisiana: ASEE Conferences, Jun. 2016, p. 26884. doi: 10.18260/p.26884.[8] J. A. Leydens, J. C. Lucena, and D. M. Riley, “Engineering Education and Social Justice,” in Oxford Research Encyclopedia of Education, Oxford University Press, 2022. doi: 10.1093/acrefore/9780190264093.013.1772.[9] B. Christe, “The Importance of Faculty-Student Connections in STEM Disciplines: A Literature Review,” vol. 14, no. 3, 2013.[10] J. J. Park, Y. K. Kim, C. Salazar, and S. Hayes, “Student–Faculty Interaction and Discrimination from Faculty in STEM: The Link with Retention,” Res High Educ, vol. 61, no. 3, pp
widely used approach in qualitative research, was used in this study toidentify, analyze, and report patterns within data [26]. As described by Braun and Clarke [26],“[a] theme captures something important about the data in relation to the research question andrepresents some level of patterned response or meaning within the data set” (p. 82).Data coding: ATLAS.ti was the platform used for this study to generate, and organize the codes.After verbatim transcription, the data was systematically coded. In particular, we identified partsof the texts where participants referred to particular events and stories related to ethics andequity. Then, we developed codes for each identified story to capture the main issue(s) that wereraised. This was done by
importance, but did not studythe actual use of these collections or services. For example, while 69% of faculty in their studyindicated that library databases were important or very important, there was no correspondingassessment of these faculty members' actual use of library databases.A multi-institution interview study organized by Ithaka S+R of civil and environmentalengineering faculty found that researchers preferred to use Google and Google Scholar for arange of information needs including finding datasets, gray literature, and scholarly articles(Cooper et al., 2019). Similarly, in an interview-based study with early career life sciences andengineering faculty at a single institution, researchers found that faculty in their study
teaching methodologies. Anotherlimitation was the inaccessibility of some articles that appeared promising for full-text screeningafter passing the abstract screening phase, due to the lack of access to the publishing journals andwebsites.AcknowledgmentThis project was supported by the Provost’s Summer Undergraduate Research and CreativeActivities (UReCA) Fellowship. Its contents, including findings, conclusions, opinions, andrecommendations, are solely attributed to the author(s) and do not necessarily represent the viewsof the Provost’s OfficeReferences 1. Allen, I. E., & Seaman, J. (2016). Online report card: Tracking online education in the
Paper ID #41801Meritocracy and Colorblindness: The Perpetuation of Whiteness in EngineeringEducation Through False NarrativesDr. R. Jamaal Downey, University of San DiegoDr. Joel Alejandro Mejia, The University of Texas at San Antonio Dr. Joel Alejandro (Alex) Mejia is an associate professor with joint appointment in the Department of Bicultural-Bilingual Studies and the Department of Biomedical and Chemical Engineering at The University of Texas at San Antonio. Dr. Mejiaˆa C™s work examDr. Diana A. Chen, University of San Diego Diana A. Chen, PhD is an Associate Professor and one of the founding faculty members of Integrated
as tensions between student and staff, as well as betweenpolicy and pedagogy [15]. In this practice paper, we incorporate the findings of studies [10] [11][12] [13] [14] [15] into the careful design and implementation of the SIG program, whichleverage the ample resources in the Inno Wing. We also adopt the SaP method in SIGs andestablish clear governance structure, finance principles, and development programs.The Student-initiated Interest Group (SIG) programGovernance structureThe SIG program adopts a Student as Partners (SaP) approach, which begins with consultationservice aimed at assisting developing teams in uniting the commitment of five parties: studentleader(s), student teammates, academic advisor(s), technical advisor(s), and host
information waswell-advertised. Students in biomedical and environmental engineering from the majoritypopulation felt that they had to seek out the opportunities. Women in the same programsperceived lab environments in these departments provided valuable experiences. One studentwho is a member of a URG noted that her research experiences have helped the student tobuild an identity as a budding engineer: “I feel like I do [response to being asked if (s)he feels like (s)he is becoming anengineer], because I’ve done research for so long. So, I started my first research project thefall of my sophomore year. And that one was not really my project. I was just mostly doingdata collection for a professor. But I’ve been doing a project that’s mostly
tokenism on America's Black elite," Social Forces, vol. 74, pp. 543-557, 1995.[4] G. A. Dotson, "No employee left behind: The lived workplace experiences of inclusion/exclusion of African American engineering professionals within the semiconductor industry," PhD, Capella University, 2008.[5] T. S. Gibbs, "From retention to detention: A phenomenological study of the African- American engineer experience," PhD, Walden University, 2008.[6] D. N. Rice, "The career experiences of African American female engineers," PhD, Texas A&M University, 2011.[7] M. S. Ross, "A unicorn's tale: Examining the experiences of Black women in engineering industry," PhD, Purdue University, 2016.[8] M. S. Ross and A
related programming. ReferencesAlavi, M., Visentin, D.C., Thapa, D.K., Hunt, G.E., Watson, R. & Cleary, M. (2020). Chi-square for model fit in confirmatory factor analysis. JAN: Leading Global Nursing Research 76 (9), 2209-2211. https://doi.org/10.1111/jan.14399Bayback, M.A. & Green, S. (2010). Confirmatory factor analysis: An introduction for psychosomatic medicine researchers. Psychosomatic Medicine 72 (6), 587-597. https://doi.org/10.1097/PSY.0b013e3181de3f8aBen-Shachar M, Lüdecke D, Makowski D (2020). Effectsize: Estimation of Effect Size Indices and Standardized Parameters. Journal of Open Source Software, 5(56), 2815. https://doi.org/10.21105/joss
ofmosquito breeding environment testing instrumentation.References[1] Yee, D. A. (2008). Tires as habitats for mosquitoes: a review of studies within the eastern United States. Journalof Medical Entomology, 45(4), 581-593.[2] Beier, J. C., Patricoski, C., Travis, M., & Kranzfelder, J. (1983). Influence of water chemical and environmentalparameters on larval mosquito dynamics in tires. Environmental Entomology, 12(2), 434-438.[3] Yee, D. A., Kneitel, J. M., & Juliano, S. A. (2010). Environmental correlates of abundances of mosquito speciesand stages in discarded vehicle tires. Journal of Medical Entomology, 47(1), 53-62.[4] Durkin, R. J. (2016). Experiential Learning in Engineering Technology: A Case Study on Problem Solving inProject-Based
Inclusive Education, 20(4): 347- 363, DOI: 10.1080/13603116.2015.1079273[4] Equalities Act (2010), UK General Public Acts, Available to download: https://www.legislation.gov.uk/ukpga/2010/15/contents[5] Kumar, K.L. and Wideman, M. (2014), “Accessible by design: applying UDL principles in a first year undergraduate course”, Canadian Journal of Higher Education, 44(1): 125-147[6] Bunbury, S. (2020) “Disability in higher education – do reasonable adjustments contribute to an inclusive curriculum?” International Journal of Inclusive Education, 24(9): 964-979, DOI: 10.1080/13603116.2018.1503347[7] May, H. and Thomas, L. (2010) Embedding Equality and Diversity in the Curriculum: Self Evaluation
interviews. It maynot be able to reflect the full extent and complexity of entrepreneurship education. The modelproposed here is intended to be a starting point for discussion rather than a fully validated model.In the future, we would like to continue to conduct a deeper investigation of program setups toinclude co-curricular and extracurricular activities in our program analysis. We would also like tointerview more universities to understand if the model captures the elements in other universitiesas well. The authors would like to receive feedback and welcome collaborations on this topic.References[1] E. Fisher, A. R. Reuber, S. Business, and T. Branch, The state of entrepreneurship in Canada. Industry Canada Ottawa, ON, 2010.[2] I. Government
reasons why certain topics are more popular than others. 2. Conduct a demographic analysis of the students to find out if there is any connection between the groups they identify with and the module they choose. 3. Examine the impact of these DEI-themed modules in an upper division algorithms course taken by all students in the computer engineering track in our department.References: 1. National Academy of Sciences. (2011). Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads: The National Academies Press. 2. Handelsman J., Elgin S., Estrada M., Hays, S., Johnson T., Miller S., Mingo V., Shaffer C., and Williams J., “Achieving STEM Diversity: Fix the