. Retrieved from https://www.asee.org/papers-and-publications/publications/college- profiles/15EngineeringbytheNumbersPart1.pdf[5] S. E. James, J. L. Herman, S. Rankin, M. Keisling, L. Mottet, M. Anafi, “The Report of the 2015 U.S. Transgender Survey,” Washington, DC: National Center for Transgender Equality, 2016.[6] A. Phipps, Re-inscribing gender binaries: Deconstructing the dominant discourse around women’s equality in science, engineering, and technology, The Sociological Review, vol. 55, no. 4, pp. 768-787, 2007.[7] Z. Nicolazzo, Trans* in College: Transgender Students’ Strategies for Navigating Campus Life and the Institutional Politics of Inclusion. Sterling, VA: Stylus Publishing, 2017.[8] J. Barbour
factor into two categories namely; personal andcontextual factors that influenced engagement. Psychologically, the term affirmative has be usedto describe student classroom engagement [13]. According to Appleton et al.’s [12] findings,indicators are considered as the student levels of connection with learning. This paper on clusteringand grouping technique primarily focused on the indicators, because students are the primary targetin the classroom engagement.Further, Marzano et al acknowledged in their findings that the dynamics of how ateacher/instructor produced the skill required for an effective classroom management is not easyto come by. Therefore, it is necessary that teachers are creative in their teaching strategies.Likewise, in 2011, Li
enact, and further establish a change-making campaign within thediscipline. The implications of visionary futures for how the world of technoscientific practicemight be otherwise via the grassroots organizing of feminist hackers and OSH groups is thusfertile ground for thinking through the leveraging of resources, expanding mindsets, tactics forshifting power dynamics, and continuing conversations as a mode toward energizing amovement.References[1] P. Brown, “Popular Epidemiology and Toxic Waste Contamination: Lay and ProfessionalWays of Knowing,” Journal of health and social behavior, vol. 33 , pp. 267-81, 1992.[2] S. Epstein, Impure Science: AIDS, Activism, and the Politics of Knowledge . Berkeley:University of California Press, 1996.[3] K
/employment-outlook-for-engineering- occupations-to-2024.htm. [Accessed January 13, 2019].[3] CareerOneStop, United States Department of Labor, “Careers with Most Openings,” [Online]. Available https://www.careeronestop.org/Toolkit/Careers/careers-most- openings.aspx?persist=true&location=US. [Accessed January 13, 2019].[4] National Academy of Engineering, “Changing the Conversation,” 2008.[5] M. W. Ohland, S. D. Sheppard, G. Lichtenstein, O. Eris, D. Chachra, and R. A. Layton, “Persistence, Engagement, and Migration in Engineering Programs,” Journal of Engineering Education, pp. 259- 278, Revised December 2008. [Online]. Available https://onlinelibrary.wiley.com/doi/10.1002/j.2168-9830.2008.tb00978.x. [Accessed January 13, 2019].[6
therefore can make a differencethrough my work.”AcknowledgmentsThis work is supported by the National Science Foundation under Grant No. EEC-1540301. Anyopinions, findings, and conclusions or recommendations expressed in this material are those ofthe authors and do not necessarily reflect the views of the National Science Foundation.References [1] J. R. Herkert, “Continuing and emerging issues in engineering ethics education,” The Bridge, vol. 32, no. 3, pp. 8–13, 2002. [2] K. Riley, M. Davis, A. C. Jackson, and J. Maciukenas, “‘Ethics in the Details’: Communicating Engineering Ethics via Micro-Insertion,” IEEE Transactions on Professional Communication, vol. 52, no. 1, pp. 95–108, Mar. 2009. [3] S. M. J. Howland, G. M. Warnick, C. B
. While not a large problem in the past, students switching project teams after 1 or 2semesters caused disruption and shifted student workloads. The student preference form used isincluded in the Appendix A. Student teams were assigned, following preferences as much aspossible, during session 4. Table 5 – Engineering Projects 1 course content for Fall 2015 Session Topic Instructor(s) 1 Introduction, Safety and Security F/Y 2 Skills Inventory, Mission/Vision F/M 3 Team Organization M 4 Creative Problem Solving G 5 Design Specifications
Performance with Workshop Groups," Journal of Science Education and Technology, vol. 11, no. 4, pp. 347-365, 2002.4 S. C. Hockings, K. J. DeAngelis and R. F. Frey, "Peer-Led Team Learning in General Chemistry: Implementation and Evaluation," Journal of Chemical Education, vol. 85, no. 7, pp. 990-996, 2008.5 S. Brown and C. Poor, "In-Class Peer Tutoring: A Model for Engineering Instruction," International Journal of Engineering Education, vol. 26, no. 5, pp. 1111-1119, 2010.6 T. J. Webster and K. C. Dee, "Supplemental Instruction Integrated Into an Introductory Engineering Course," Journal of Engineering Education, vol. 87, no. 4, pp. 377-383, 1998.7 R. Jacquez, V. G. Gude, A. Hanson, M. Auzenne and S. Williamson
affective outcomes wereinvestigated with the goal of predicting and improving engagement and connection tocommunity across a diverse range of institutions, students, teaching styles, and faculty. In theportion of the study discussed here, qualitative analysis of focus group data was used to identifydifferences in student perceptions of formal (in class) and informal (out of class) faculty supportby class size and institution type at five different institutions in engineering and computerscience majors.Research SettingThe five participating institutions in this study, described according to their Carnegieclassifications34, and their key characteristics as drawn from institutional data and missionstatements are as follows: HBCU (Masters S): A
keeping pace and routines, such as arriving on time. Finally, our study echoesprevious research in engineering education in that self-efficacy can be altered (negativelyand positively) in relatively short periods of time, which has an important effect onacademic achievement. References1. Meyer, M., & Marx, S. (2014). Engineering dropouts: A qualitative examination of why undergraduates leave engineering. Journal of Engineering Education, 103(4), 525– 548.2. Pascarella, E. T. & Terenzini, P. T. (2005). How college affects students, volume 2. San Francisco, CA: Jossey-Bass.3. DesJardins, S. L., Ahlburg, D. A., & McCall, B. P. (1999). An event history model of student departure
-stateproblem (Fig. 1) was adopted from an exercise at the end of Chapter 4 (“Two-Dimensional,Steady-State Conduction”) of Incropera et al.’s textbook25, while the transient, semi-infinitemedium problem (Fig. 2) was adopted from an exercise at the end of Chapter 4 (“Transient HeatConduction”) of Çengel and Ghajar’s textbook13.After the introduction of the problem statement and summaries of the educational objectives andrelevant FE and course theory, each ALM includes the following solutions steps (these steps areapplicable to thermal ALM’s using SolidWorks and SolidWorks Simulation, but similar steps arefollowed for ALM’s that use other software packages): 1. Using SolidWorks to create a 3-D model. The steps required to draw the model in
%), African American (3.8%), Hispanic/Latino American (9.2%). Twenty-six percent ofthe sample identified as international students, and a similar percentage (24.2%) identifiedEnglish as their second language.Protocol To evaluate the effectiveness of the new interpersonal communication focused content, arandomized controlled trial was conducted, as it provides the strongest evidence for evaluatingthe effectiveness of an intervention49 An essential component of randomized controlled trials isthat participants are randomly split between treatment and control groups. Control group(s) arenot exposed to the intervention, while treatment group(s) are. Following treatment groupexposure, differentiations between the treatment and control groups are
- Page 26.108.2income students, and/or students who start college significantly later than 18 years of age are atbest underrepresented, and at worst socially marginalized in many engineering classrooms.Furthermore, McIntosh explains that the myth of monoculture assumes that there is a single“normal” experience8. Recognizing and acknowledging that a “monoculture” is embeddeddeeply in the engineering education system may not be easy for those of us who are engineeringeducators and researchers. McIntosh points out that such a monoculture mirrors that of the USsocial system, not merely by what she calls “active forms” of interlocking oppressions, but moredeeply—in embedded forms—forms which “member[s] of the dominant group are taught not tosee”9
. 107th ASEE Annual Conference & Exposition, St. Louis, Missouri.14. System Dynamics Society (2015) www.systemdynamics.org15. Forrester, J.W. (1961) Industrial Dynamics. Cambridge, MA: The MIT Press. Reprinted by Pegasus Communications, Waltham, MA.16. Forrester, J.W. (1969) Urban Dynamics. Cambridge, MA: The MIT Press. Reprinted by Pegasus Communications, Waltham, MA.17. Aström, K.J., and Murray, R.M. (2008) Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press.18. Palm, W. J. (2014) System dynamics. New York, NY, McGraw-Hill Science.19. Zelinka, I., Vaclav, S. and Ajith, A. (2013) Handbook of Optimization: From Classical to Modern Approach. Berlin: Springer
author(s) and do not necessarily reflect the views of the NationalScience Foundation.Bibliography1. Leaning, J. & Guha-Sapir, D. Natural Disasters, Armed Conflict, and Public Health. N. Engl. J. Med. 369, 1836–1842 (2013).2. Garriga, E. & Melé, D. Corporate social responsibility theories: mapping the territory. J. Bus. Ethics 53, 51–71 (2004).3. National Society of Professional Engineers. NSPE Code of Ethics for Engineers. (2007).4. Herkert, J. R. in Social, ethical, and policy implications of engineering: selected readings 45–73 (IEEE Press, 2000).5. Hess, J. L. et al. Empathy and caring as conceptualized inside and outside of engineering: Extensive literature review and faculty focus group analyses. in
. 20, no. 3, pp. 305-312, 2004.[8] C. Dym, A. Agogino and O. Eris, "Engineering design thinking, teaching, and learning," Journal of Page 26.1100.15 Engineering Education, no. January, 2005.[9] N. Hotaling, B. B. Fasse, L. F. Bost, C. D. Hermann and C. R. Forest, "A Quantitative Analysis of the Effects of a Multidisciplinary Engineering Capstone Design Course," Journal of Engineering Education, vol. 101, no. 4, pp. 630-656, 2012.[10] J. L. Zayas, J. S. Lamancusa, A. L. Soyster, L. Morell and J. Jorgensen, "The Learning Factory: Industry- Partnered Active Learning," Journal of Engineering Education, no. January 2008, pp
. Page 26.1404.125. References[1] Assessment and Institutional Research. (2010). CUNY Student Experience Survey. New York City College of Technology, CUNY.[2] Barnett, S. & Ceci, S (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612-637.[3] Bateman, C. (Ed.). (2007). Game writing: Narrative skills for videogames. Boston: Charles River Media.[4] Benander, R., & Lightner, R. (2005). Promoting transfer of learning: Connecting general education courses. The Journal of General Education, 54 (3), 199-208.[5] Brooks, R. E. (1977). Towards a theory of the cognitive processes in computer programming. International Journal of Man-Machine Studies, 9, 737-751.[6] Cabo, C
experiences support science career decisions and active learning.” CBE Life Sciences Education 6: 297-306.3. Russell, S. H., M.P. Hancock, and J. McCullough. (2007 ). “The pipeline. Benefits of undergraduate research experiences.” Science 316(5824): 548-9.4. Kinkel, D. H. and S. E. Henke. (2006). “Impact of undergraduate research on academic performance, educational planning, and career development.” Journal of Natural Resources and Life Sciences Education 35: 194-201.5. Lanza, J. and G. C. Smith. (1988). Undergraduate research: A little experience goes a long way. J. Coll. Sci Teach. 18:118-1206. Hunter, A-B., S. L. Laursen, and E. Seymour. (2007). “Becoming a scientist: The role of undergraduate research in students
persistentstructure of the education system even though we were explicitly attempting to behavedifferently. As we, the faculty and students, began to recognize the structure we could let go ofthe problem and the solutions. However, this “letting go” had to occur repeatedly (almostweekly) as the issue continued to be bothersome to many of us.What are the cultural beliefs, values, and paradigms that are causing the problems of intransigentSTEM pedagogies that result in STEM cultures that are exclusive? We first note that “S” refersto the physical, or equivalently, the natural sciences; it excludes all other organized ways ofthinking, or “sciences.” Implicitly, natural sciences are prioritized over other “sciences.”The natural sciences derive knowledge through
expertise in biomedical engineering students.In Proceedings of the 2001 American Society for Engineering Education Annual Conference, Albuquerque, NM[2] Brophy. S., Hodge, L. & Bransford, J. (2004, October). Work in progress – Adaptive expertise: Beyond applyacademic knowledge. In the ASEE/IEEE Frontiers in Education Conference.[3] Crawford, V. M., Schlager, M., Toyama, Y., Riel, M., & Vahey, P. (2005, April). Characterizing adaptive expertise inscience teaching. In annual meeting of the American Educational Research Association, Montreal, Quebec, Canada.[4] De Arment, S. T., Reed, E., & Wetzel, A. P. (2013). Promoting Adaptive Expertise A Conceptual Framework forSpecial Educator Preparation. Teacher Education and Special Education: The
the course. Future data collection will also provide the opportunity to assess thecourse’s long-term viability and effectiveness as either a stand-alone course within thecurriculum or as an incubator that can be integrated into existing courses.References1. Streveler, R. A., Smith, K. A. & Pilotte, M. Aligning course content, assessment, and delivery: Creating a context for outcome-based education. K. Mohd Yusof, S. Mohammad, N. Ahmad Azli, M. Noor Hassan, A. Kosnin S. K, Syed Yusof (Eds.), Outcome-Based Educ. Eng. Curric. Eval. Assess. Accreditation. Hershey, Pennsylvania IGI Glob. (2012).2. Wiggins, G. P. & McTighe, J. Understanding by design. (Ascd, 2005).3. Dewey, J. Education and experience. (1938).4
; Wenderoth, M. P. (2008). Biology in Bloom: Implementing Bloom’ s Taxonomy to Enhance Student Learning in Biology. CBE - Life Sciences Education, 7, 368–381. http://doi.org/10.1187/cbe.08Forbes-Lorman, R. M., Harris, M. A., Chang, W. S., Dent, E. W., Nordheim, E. V., & Franzen, M. A. (2016). Physical models have gender-specific effects on student understanding of protein structure-function relationships. Biochemistry and Molecular Biology Education, 1– 10. http://doi.org/10.1002/bmb.20956Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of
used to rank eachcandidate in which a low GPA would not automatically disqualify an applicant as long as therewere other positive aspects within the application. Positive aspects included: extracurricularactivities that demonstrate ability to work on a team, personal statement demonstrates a passionfor a particular area of research that matches the planned REU projects, no prior researchexperience, home institution lacks research opportunities, high GPA in particular course(s),and/or exceptional recommendation letter(s). At least six quality applicants from the target poolwere selected. The remaining four slots would go to the highest ranked applicant in either targetor non-target pool.The only factor that could automatically disqualify an
Technical College Jill Davishahl is a faculty member in the engineering department at Bellingham Technical College where she teaches courses ranging from Intro to Engineering Design to Engineering Statics. Outside of teach- ing, Jill is working on the development of a Bachelor of Applied Science in Engineering Technology and is currently PI on the NSF funded ATE project grant in renewable energy as well as PI on an NSF funded S-STEM project. She holds a Master of Science in Mechanical Engineering from the University of Washington.Mr. Eric Davishahl, Whatcom Community College Eric Davishahl is faculty and engineering program coordinator at Whatcom Community College. His teaching and research interests include
Frequency Frequency (%) (n=12 projects) (n=10 projects) Health 20 37 85% increase Toilet(s) 61 83 36% increase Sewage 21 27 29% increase Sanitary 4 5 25% increase Sanitation 35 40 14% increase Urine 29 23 21% decrease Latrines 7 4
. National Academy of Engineering and American Society for Engineering Education, (2014). Surmounting the barriers: Ethnic diversity in engineering education: Summary of a workshop. Washington, DC: The National Academies Press, 2014.14. National Academy of Engineering; Grand Challenges for Engineering: Imperatives, Prospects, and Priorities. Washington: National Academies Press, 201615. Woolsey, S. A. & Shepler, D. K.; Understanding the early integration experiences of first- generation college students. College Student Journal. 45, 4, 700-714, 2011.16. Antonio, A.L., Chang, M.J., Hakuta, K, Kenny, D.A., Levin, S. & Milem, J.F. , Effects of racial diversity on complex thinking in college students. Psychological Science. 15, 8
. Bates, C. Allendoerfer, D. Jones, J. Crawford, and T. Floyd Smith, “The relationship between belonging and ability in computer science,” in Proceeding of the 44th ACM technical symposium on Computer science education - SIGCSE ’13, 2013, p. 65.[4] R. M. Marra, K. A. Rodgers, D. Shen, and B. Bogue, “Leaving Engineering: A Multi- Year Single Institution Study,” J. Eng. Educ., vol. 101, no. 1, pp. 6–27, 2012.[5] B. Geisinger and D. R. Raman, “Why They Leave: Understanding Student Attrition from Engineering Majors,” Int. J. Eng. Educ., vol. 29, no. 4, pp. 914–925, 2013.[6] J. L. Smith, K. L. Lewis, L. Hawthorne, and S. D. Hodges, “When Trying Hard Isn’t Natural: Women’s Belonging with and Motivation for
business processes necessaryto nurture new technology from concept to commercialization.Concluding remarksThe pitch presentation as a communication technique is an effective tool in the arsenal ofentrepreneurial thinking. Considerable work, preparation and motivation are required to deliveran effective and persuasive presentation of this kind. At Stevens we have developed a companioncourse to the senior design sequence that involves a required participation in a pitch competition,involving prizes of considerable monetary value that are externally endowed in perpetuity. Wehave found that the format of our pitch presentation is well-structured, with both internal andexternal validation. The engineering teams select their best pitcher(s) to represent
students need and create a learning environment that is both academically rigorousand culturally balanced. Concrete examples showed how STEM faculty have used results oftheir student surveys and other practices to adapt their course(s) to be more culturally responsive,helping students feel welcome, respectful of each other's culture and backgrounds, engaged withSTEM, and prepared for the cultures they may encounter as they transition to the workforce.Thirty-eight post webinar survey responses (a 40% response rate) indicated that the webinarexceeded expectations (47.37%) or mostly met expectations (47.37%). Survey respondentsindicated that their confidence level to introduce culturally responsive instruction into theirclassroom/ institutions
project manager, team name, and a logo. The course isassigned an instructor although students are advised by all department faculty on differentaspects of the project. There are also industry advisor(s) and/or a project sponsor. Students oftenfind their projects and industry advisors while they are completing the co-op experience.Sometimes engineers within the community volunteer their time as advisors and bring their ownprojects. Other typical projects involve design of a new campus building or development of anempty property lot within the city. Similar to what is done at other institutions, students interactwith local engineers, stakeholders, and city officials during their projects [13, 16]. Each teamworks on a unique project.The course has
-Scale Study onthe Needs of Students with Disabilities in Engineering Courses,” in 2021 ASEE Virtual AnnualConference Content Access Proceedings, Virtual Conference: ASEE Conferences, Jul. 2021, p.36627. doi: 10.18260/1-2--36627.[2] S. Bellman, Sheryl Burgstahler, and Penny Hinke, “Academic Coaching: Outcomes from aPilot Group of Postsecondary STEM Students with Disabilities.” Journal of PostsecondaryEducation and Disability, 2015. [Online]. Available: https://eric.ed.gov/?id=EJ1066319[3] E. da S. Cardoso, Brian N. Phillips, Kerry Thompson, Derek Ruiz, Timothy N. Tansey, andFong Chan, “Experiences of Minority College Students with Disabilities in STEM.” Journal ofPostsecondary Education and Disability, 2016. [Online]. Available:https