Paper ID #49641Hands-On Fluid Mechanics: A Laboratory Course Development StoryDr. Matthew Kuester, University of Mary Hardin-Baylor Dr. Kuester is an Assistant Professor at the University of Mary Hardin-Baylor in the Computer Science, Engineering, and Physics Department. His research interests include renewable energy, aerodynamics, fluid mechanics, and engineering pedagogy. ©American Society for Engineering Education, 2025 1 Session XXXX Hands-On Fluid Mechanics: A
Paper ID #45748Development of a Heat Sink-Focused Heat Transfer Laboratory for MechanicalEngineering EducationMiss Megan Elizabeth Batchelor, Mercer University I am a senior studying mechanical engineering at Mercer University. Upon graduation, I plan to pursue a Ph.D. in aerospace engineering.Dr. Chandan Roy, Mercer University Dr. Chandan Roy is an assistant professor in Mechanical Engineering in the School of Engineering at Mercer University in Macon, GA. He received his Ph.D. in Mechanical Engineering from Auburn University in Auburn, AL. Dr. Roy published many peer-reviewed articles. His research interests include
Paper ID #45406Mini-Laboratory Activities for Observing Electromagnetic Fields in a RequiredUndergraduate Course for Electrical EngineersDr. Gregory J. Mazzaro, The Citadel Dr. Mazzaro earned a Bachelor of Science in Electrical Engineering from Boston University in 2004, a Master of Science from the State University of New York at Binghamton in 2006, and a Ph.D. from North Carolina State University in 2009. From 2009 to 2013, he worked as an Electronics Engineer for the United States Army Research Laboratory in Adelphi, Maryland. For his technical research, Dr. Mazzaro studies the unintended behaviors of radio frequency
Paper ID #45770WIP: Evaluating the impacts of an integrated, project-based approach tobiomedical engineering laboratory teachingSierra Milligan, University of GeorgiaDr. John Ray Morelock, University of Georgia Dr. Morelock is an Assistant Professor of Practice with an emphasis on engineering education research, and the Associate Director of Educational Innovation and Impact for UGA’s Engineering Education Transformations Institute (EETI). In addition to coordinating EETI’s faculty development programming, Dr. Morelock conducts research on institutional change via faculty development, with an emphasis on innovative ways
2025 ASEE Northeast Section Conference, March 22, 2025, University of Bridgeport, Bridgeport, CT, USA. Enhancing Engineering Curricula Through Laboratory-based Learning: Pedagogical Approaches, Challenges, and Innovations Marvin Gayle, Danny Mangra Queensborough Community College The City University of New York [CUNY] Queens New York, USA Abstract—Laboratory-based instruction is a critical underscore ways to evaluate the effect of laboratory education oncomponent of engineering education. It
Paper ID #49610Development of Embedded Technical Writing in a Junior-level GeotechnicalEngineering Laboratory ClassDr. James Joseph Lynch, University of Detroit Mercy Dr. Lynch is an Associate Professor in the Department of Civil, Architectural, and Environmental Engineering. He teaches classes in geotechnical engineering, construction materials, and forensic engineering. His research interests include nondestructiveDr. Alexa Rihana Abdallah, University of Detroit Mercy Alexa Rihana Abdallah is a professor of Civil and Environmental Engineering at the University of Detroit Mercy. She received her PhD in Environmental
and explanation of mathematical derivations and conceptualhands-on experience. Through this approach, students gain a frameworks. Additionally, MATLAB simulations anddeeper understanding of key concepts such as modulation, laboratory exercises are integrated to reinforce theoreticalbandwidth, demodulation, and noise while also exploring concepts through hands-on learning experiences. Usingcommunication system design. This paper outlines the use of MATLAB and Simulink, students engage in interactivelaboratory demonstrations, hands-on activities, MATLAB exercises that provide a visual understanding of key topics.simulations, and projects to create an immersive learning These
good popularity in computer programming education. Generally, Python is a high-levellanguage, and it is considered a scripting language. For firmware or microcontroller education,compiler-based C/C++ languages are typically taught in courses and lessons. As an alternativeapproach, Python script language can be used in creating programs to control microcontrollers andprocessors. In this paper, MicroPython will be reviewed and studied as a potential use inmicrocontroller and embedded system education. MicroPython is open-source software, and it is alean version of a standard Python. In this paper, several programming laboratory examples will bepresented, and they are written in MicroPyhon for a Raspberry Pi Pico, RP2040. AlternativeMicroPython
Paper ID #45467Development of a software tool to improve educational outcomes in a timeconstant measurement experimentDr. Kenneth Marek, Mercer University ©American Society for Engineering Education, 2025 Development of a software tool to improve educational outcomes in a time constant measurement experimentAbstract:In a junior level mechanical engineering experimental measurements laboratory course, studentsperform an experiment in which they determine time constants of various electronic temperaturesensors, based on a lumped capacitance heat transfer model. In the past, many students havestruggled with the
questions. Therefore, it is desiredto use a low cost open educational resource (OER) that can be adapted to the needs of eachcourse. One such OER is MyOpenMath, a mathematics based online tool that integrates intocommon learning management systems and is free for both faculty and students. In this paperwe discuss how this tool is currently implemented in a senior capstone design course and a unitoperations laboratory in chemical engineering. This presentation includes characteristics ofMyOpenMath, benefits for instructors, available instructor training, and benefits over usingcurrent quizzes in the Canvas LMS. Not limited to chemical engineering courses, MyOpenMathis applicable to any equation based course. This paper focuses on the faculty
author (sbhattacharia@wtamu.edu, nhiranuma@wtamu.edu) AbstractWe developed curricular activities that were based on the application of a Community IceNucleation Cold Stage to teach the theory of solidification that is applicable to multidisciplinarySTEM disciplines. We adopted a freezing assay, which simulates ambient immersion freezing ina laboratory setting (i.e., freezing of ice-nucleating aerosol particles immersed in a water droplet),to provide hands-on, laboratory-based education to STEM students at a primarily undergraduateand minority-serving institute (PUI-MSI). With the freezing assay, we instructed more than 60STEM students on fundamental concepts of material and atmospheric science, such
in a session where an interactive survey was administered to capture feedback on theeducational areas identified for future projects. Participants were asked to provide their input,suggest additional areas of need, and rank the proposed educational initiatives on a scale from 1to 5, with 1 being the highest priority. Study results indicated that the most critical needidentified by CJC participants was higher education and scholarship training, as well as hands-ontraining of laboratory/field equipment. These findings will guide future MOM Belize programefforts, ensuring that the program continues to meet the needs of CJC and its community.Key Wordsneeds assessment; focus group; service-learning project; international partner
ascending survey during an NSF training session. Thepossible responses to survey questions were listed worst-to-best. Both the questions and possibleresponses were detailed focusing on the goal, experience and performance associated with eachlevel. I do not remember if the performance level was mentioned. If so, it was not necessary. Ithought I could use this experience to better determine the effectiveness of pedagogicaltechniques based on student feedback.I had five pedagogical goals for the Engineering Materials course I was teaching. They were: 1: Students will successfully perform at the analysis and synthesis levels of Blooms Taxonomy throughout the course. 2: Students will value the integrated laboratory experience. 3
. Circuit Implementation each pushbutton, before being grounded, to eliminate any residual floating voltage once the button was lifted. With the theoretical foundation, coupled with access to auniversity electronics laboratory, everything was in place to Fig. 2. Circuit schematic of the digital guessing game. The setter’s and guesser’s consoles (orange and gray) relay signals to the XOR chip (purple) and the main computing unit (peach). The LED output appears at the bottom right (blue). TABLE I. TRUTH TABLE FOR XOR GATE A B X (output
. During this session, to orient participants’ design efforts, we brieflydiscussed the concept of MR [21] and six popularly used definitions of MR [6] to theparticipants.The designer-research team synthesized the results of sessions 1 and 2, specifically focusing onthe needs of ECE students for both social and academic activities that encourage collaboration,and created fictional scenarios for laboratory and social activities that required teamwork in bothFigure 3: Screenshot of participants using the prototype MR system. A virtual classroom wascreated in Gather.town based on the classroom in which session 3 took place. Both remote andin-person students’ presence is represented by virtual avatars.in-person and online settings (see Figure 3). The
of open-ended lab experiences and contributes to thegrowing conversation on innovative engineering education strategies by demonstrating the valueof experiential learning approaches, particularly the integration of entrepreneurial mindsetlearning (EML) into laboratory experiences.Why open-ended labs?The decision to introduce open-ended labs into our curriculum was inspired by the insightsgained from the Summer 2024 Engineering Mechanics in Lab and Design workshop series,hosted by the University of Illinois Urbana-Champaign and supported by the Kern FamilyFoundation. During this workshop, we had the opportunity to explore in more depth the conceptof open-ended labs, engaging with experts and educators who have successfully implementedsuch
Paper ID #49532Predictive Modelling of a Continuously Variable Transmission for OptimalPerformanceKathryn Chludzinski, Youngstown State University - Rayen School of Engineering Kathryn Chludzinski is a graduate student in Youngstown State University’s (YSU) mechanical engineering program. Her research focuses on developing a laboratory for Dynamic Systems Modeling (DSM) students, utilizing a continuously variable transmission and inertia dynamometer. She has been a member of YSU’s SAE Baja team since the 2020 season. She is a certified machinist, having achieved her certification in 2019, and has been working in the
different levels as well as laboratories. Very passionate about education and has exp ©American Society for Engineering Education, 2025 1 Session 5Case Studies on Hands-on STEM Program in Chemical Engineering for High School Students Ali Gharib Ahmed Elsaid Abdulla Al-Dabbagh The University of Texas at Austin Eindhoven University of Technology Qatar Academy for Science & Austin, Texas, USA Eindhoven, Netherlands Technology, Doha, Qatar
2009 to 2013, he worked as an Electronics Engineer for the United States Army Research Laboratory in Adelphi, Maryland. For his technical research, Dr. Mazzaro studies the unintended behaviors of radio frequency electronics illuminated by electromagnetic waves and he develops radars for the remote detection and characterization of those electronics. In the Fall of 2013, Dr. Mazzaro joined the faculty of the Department of Electrical & Computer Engineering at The Citadel. There, he is the primary instructor for Electromagnetic Fields, Interference Control in Electronics, Antennas & Propagation, and Electrical Laboratory courses. ©American Society for Engineering Education, 2025
existing LMS, FacultySystems feedback, Knowledge feedback, Customized training needs assessment learning pathsVirtual Virtual Circuit Lab, Hands-on experimentation, 25% improvement in Hardware requirements,Laboratories PhET Simulations Remote lab access, Safety- problem-solving, Technical support needs, critical scenarios Increased accessibility, Development costs Cost-effective vs physical labsAI
0.024 W·m−1·K−1 [1], andthus prevents an efficient heat transfer from the processor to the heat sink. Imperfect surfacecontact between the processor and the heat sink is a major limiting factor for creating newelectronics. Thermal Interface Materials (TIMs) are thermally conductive materials used toimprove surface contact with a thermally conductive material, displacing the air and increasinginterfacial heat transfer between the heat sink and processor and this prevents overheating of thesystem.The objective was to produce repeatable and reliable results using a setup, which costssignificantly less than commercial testers. This would make TIM testing more accessible to highschool laboratories and developing nations. The goal of this project was
, and 2) is based on the knowledge and skills acquired in earlier course work.Criterion 6. Faculty • Can the program demonstrate that the faculty members are of sufficient number and they have the competencies to cover all of the curricular areas of the program • Are the faculty number sufficient to accommodate adequate levels of student-faculty interaction, student advising and counseling, university service activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.Criterion 7. Facilities • Classrooms, offices, laboratories, and associated equipment must be adequate to support attainment of the student outcomes and to
Engineering at VCU. Dr. Pidaparti received his Ph.D. degree in Aeronautics & Astronautics from Purdue University, West Lafayette in 1989. In 2004, he joined the Virginia Commonwealth University as aMr. Jarron Gravesande, Providence Chrisitian Academy Science instructor and accredited research assistant with over 5 years of professional experience in laboratory procedures. ©American Society for Engineering Education, 2025 Create your 3D Eye: A Lesson Module for Grades 6-8 from ImageSTEAM Teacher's WorkshopAbstractThrough an NSF-funded ITEST program, Labeled ImageSTEAM, a summer workshop wasconducted in June 2024 with a diverse group of middle school teachers. The workshop
Paper ID #45527Exploration of Collaborative Design Spaces: Student Engineering Interactionsand Workflows in Product DevelopmentFrederick Rowell, Clemson University Lead Author Bio: Frederick (Fritz) Rowell is a graduate student at Clemson University in the Department of Mechanical Engineering. He is focusing on virtual engineering tools, including PLM, PDM, and Additive Manufacturing, to quicken product design cadence through coursework and human-subject studies. His professional experience includes internships at E-Z-GO in Augusta, GA, and Savannah River National Laboratory in Aiken, SC.Dr. Todd Schweisinger P.E., Clemson
provides the foundation for addressing sustainable material selection through thelens of systems thinking considering trade-offs between materials, making informed decisionssupported by data, and communication.The activity was integrated in the 1-credit Mechanics of Materials’ laboratory session atLawrence Technological University. Eighteen students were enrolled in the session and they met2 hours per week. The activity was presented to the students about 8 weeks into a 15-weeksemester. The students had gained theoretical and practical experiences in several topics throughapplications of the force-displacement relationship and the behavior of various materials.In week 8, the students were introduced to the EOP topic area of Material Selection
group discussions often triggered additional comments from studentswhich may have been missed if the interviews were individual. Group discussions fostered synergy,encouraging more students to share their observations and experiences.Student FeedbackNotable AI tools include ChatGPT, Microsoft Copilot, Claude AI, Google Gemini, and Meta AI.Although the University provides access to Microsoft Copilot [12], most students prefer ChatGPT[13], with 20% subscribing to its premium service. Students expressed dissatisfaction with Copilot,unanimously favoring ChatGPT.Figure 1 shows the results of the student survey organized by course: Senior Design (SD): A two-semester capstone design project in groups of 3 to 5 students. Laboratory Classes
for a more highlyskilled workforce equipped with programming skills for the analysis of the huge amount of data thatcan be generated on construction sites, particularly with respect to the prediction of the properties ofmaterials for useful insight generation as well as rapid and informed decision making. In this study,construction students were introduced to artificial intelligence (AI) techniques and how they can beused for predicting the properties of construction materials in a construction course. First, thestudents were presented with a basic knowledge of AI for predicting the strength of constructionmaterials. A hands-on programming laboratory session was designed to get students started with theimplementation of AI knowledge through
field trips, laboratory work, and traveling to museums, aswell as the distances between rural schools and these resources, challenge schools in providingSTEM education. [2]In West Virginia, a predominately rural state (34 of 55 counties are rural), more STEM outreachefforts are concentrated in urban counties, as shown in Figure 1 and Table 1 from Coltogironeand Kuhn et al.[1]Here, we see that STEM outreach is poor in rural areas and that average STEM initiatives inurban areas of the state are about 3 times that of rural counties. Many of the rural counties haveless than two STEM initiatives.In addition, rural students are 10 times more likely to prefer working in rural settings[3], whichcreates a win-win situation in training rural students in
from instructors and collaborate with peers, enhancing their overall learningexperience. In environmental engineering, practical skills are crucial. A study [5] showed thatstudents with higher attendance rates performed better in laboratory components of the course,suggesting that attendance facilitated the acquisition of practical skills essential for the field.Several factors can impact attendance rates, including student motivation, course design, andexternal commitments. Studies have shown that flexible course delivery methods, such as hybridmodels, can improve attendance by accommodating diverse student needs [6]. Despite the clearlink between attendance and performance, some studies have faced challenges such as self-reporting bias in