AC 2011-873: TEACHING ENTREPRENEURSHIP THROUGH VIRTUESCalvin C. Jen, Calvin College Cal Jen, M.Arch., is currently serving as an associate professor of business at Calvin College in Grand Rapids, MI where he has taught business full-time for the past 4 years. He has previously taught archi- tecture for 12 years as adjunct faculty at the University of Michigan and at Calvin College. He has 30 years of business experience in architecture and corporate management including 15 years as the founder and principal architect of AMDG Architects, and 9 years as the senior vice president of real estate and human resources for Domino’s Farms (global headquarters of Domino’s Pizza). Cal has also served on a wide variety of
than once in a cohort’s four year program. The difference between thedifferent modules that carry the same name lies in the specific activities that comprise them.1. “Community Modules”: Our university unique location allows interaction with a cultural-, racial-and age-diverse community for enriching the learning and teaching environment. This module makes useof this diversity and consists of several elements. One of these elements is reaching out to the K-12community where some of the students in the program will help in teaching technology at local schools.Students from each cohort will be engaged in hands-on laboratory experiments. For example, they mightdesign, build and test miniature bridges using dedicated computer programs; use fiber
propulsion systems. At Baylor University since 1998, he teaches courses in laboratory techniques, fluid mechanics, energy systems, aeronautics, wind energy, and propulsion systems. Research interests include experimental gas turbine heat transfer and wind energy.Dr. Buford Randall Jean, Baylor University Buford Randall Jean, Ph.D., Associate Professor of electrical and computer engineering, is the holder of nine U.S. patents and corresponding foreign patents in the field of microwave metrology, which have resulted in scientific and industrial instruments for a wide range of sensing and control applications. Industrial products based upon these inventions are in use world-wide. He has more than 25 years of aca- demic and
technology,however, only the three finalist projects are discussed here. Two of the contributions primarilyfocused on experimenting with the flipped classroom practice due to availability of the state ofthe art video and recording equipment purchased and provided by the University. However, oneimplementation targeted introductory math courses while the other focused on a core mechanicalengineering course. Developing a visual support tool to aid learning and training activities for achemical engineering laboratory was the theme of the third project. Table 1 lists the projects andtheir status.Table 1. Three finalist projects from the 2014 Teaching Innovation with Technology Competition. Project Title
Paper ID #13489Extracurricular Fieldtrips to Theme Parks to Teach Creativity and Innova-tionDr. Mark M. Budnik, Valparaiso University Mark M. Budnik is the Electrical and Computer Engineering Department Chair and the Paul and Cleo Brandt Professor of Engineering at Valparaiso University. Prior to joining the faculty at Valparaiso Uni- versity in 2006, Mark worked in the semiconductor industry, culminating as a Principal Engineer and Director of White Goods and Motor Control at Hitachi Semiconductor. He is the author of more than fifty book chapters, journal articles, and conference proceedings. Mark’s current research
Paper ID #18562Teaching Entrepreneurial Mindset in a First-Year Introduction to Engineer-ing CourseDr. Chao Wang, Arizona State University Chao Wang received her Ph.D. in Electrical Engineering from University of Wisconsin, Madison. She is currently a senior lecturer in Ira. A Fulton Schools of Engineering at Arizona State University. c American Society for Engineering Education, 2017 Teaching Entrepreneurial Mindset in a First Year Introduction to Engineering CourseAbstractWith a mission to graduate engineers who can create personal, economic, and societal valuethrough a lifetime
society. Why will a Practitioner find utility in this approach? Most of the engineering education practitioners use natural sciences and deductivemethods both in their research as well as in their teaching meaning that they need toobserve and present their findings in a logical and bias-free context5, 61, 14. This applies toboth the classroom as well as the laboratory. There is very little, or no space at all, forresearcher-based personal, inductive or intuitive interpretation 36, 61. Conversationalstorytelling and the SBL method become engaging only when it is storyteller-based.Meaning both the teacher and the student. It is all about interpretations and emotions13, 33.As for engineering education this means that the method is
2006-699: TEACHING ENTREPRENEURSHIP TO ENGINEERS: ALOGICO-DEDUCTIVE REVIEW OF LEADING CURRICULAThomas Duening, Arizona State UniversityWilliam Sherrill, University of Houston Page 11.1208.1© American Society for Engineering Education, 2006 Teaching Entrepreneurship to Engineers: A Logico-Deductive Review of Leading Curricula By Thomas N. Duening Ira A. Fulton School of Engineering Arizona State University William W. Sherrill C.T. Bauer College of Business University of HoustonSubmitted to the American Society of
Paper ID #14907Neuroscience 101: Might Your Teaching and Their Learning Benefit?Dr. Stuart G. Walesh P.E., S. G. Walesh Consulting Stuart G. Walesh, Ph.D., P.E., Dist.M.ASCE, and F.NSPE (stuwalesh@comcast.net, www.helpingyouengineeryourfuture.com) is an author; teacher; and an independent consultant providing leadership, management, and engineering services. Prior to beginning his consultancy, he worked in the public, private, and academic sectors serving as a project engineer and manager, department head, discipline manager, marketer, legal expert, professor, and dean of an engineering college. Walesh’s technical
challenge students to move beyondcontinuous improvement projects. In several cases, ideas generated in the classroom orthrough collaborative efforts between the business and technology faculty have resultedin prototypes being built in the laboratory for further testing of the prospectiveinnovation.The presence of a technology-centered business incubator located within walking Page 11.530.2distance from campus provides students the opportunity to observe several hightechnology businesses that have developed new technology niches in established marketsegments. These businesses provide consulting opportunities for cross-disciplinarygraduate student teams to
Paper ID #10497Initial Investigation of Analytic Hierarchy Process to Teach Creativity in De-sign and EngineeringDr. Jennifer Grimsley Michaeli P.E., Old Dominion University Dr. Jennifer G. Michaeli is an Assistant Professor in the Department of Engineering Technology of Old Dominion University (ODU). She received her PhD in Mechanical Engineering from Old Dominion University, her MSc in Ocean Systems Management from Massachusetts Institute of Technology, and her BSc in Naval Architecture and Marine Engineering from Webb Institute. Prior to her arrival to ODU, Dr. Michaeli spent over a decade of service in the Department
Paper ID #34560Reporting the Use of an Innovative Platform for Online Teaching andTeamworkDr. Peter Golding P.E., University of Texas at El Paso Undergraduate Program Director in Engineering Innovation & Leadership, Professor in the Department of Engineering and Leadership, and Director of the Center for Research in Engineering and Technology Education, at the University of Texas at El Paso.Mr. Mike Thomas Pitcher, University of Texas at El Paso Mike Pitcher is the Director of Academic Technologies at the University of Texas at El Paso. He has had experience in learning in both a traditional university program as well
Department of Energy’s Los Alamos National Laboratory in New Mexico. An active member of American Society for Engineering Education (ASEE), he has a strong interest in creating new student-centered, engaging approaches to STEM education. As an Innovation Advisor to Elsevier’s Academic Engineering Solutions Library Advisory Board (AES-LAB), he has been the lead content developer for the 2016 Elsevier Engineering Academic Challenge and the 2015 Knovel Academic Challenge.Mr. Jay J. Bhatt, Drexel University (Eng. & Eng. Tech.) Jay Bhatt is responsible for building library collections in engineering subject areas, outreach to fac- ulty and students, and teaching information and research skills to faculty and students in
AC 2012-2975: ASSESSING INSTRUCTIONAL MODULES THAT ACCEN-TUATE STUDENT PERFORMANCEDr. Mysore Narayanan, Miami University Mysore Narayanan obtained his Ph.D. from the University of Liverpool, England in the area of electrical and electronic engineering. He joined Miami University in 1980 and teaches a wide variety of electrical, electronic, and mechanical engineering courses. He has been invited to contribute articles to several ency- clopedias and has published and presented dozens of papers at local, regional, national, and international conferences. He has also designed, developed, organized, and chaired several conferences for Miami University and conference sessions for a variety of organizations. He is a Senior
AC 2012-4414: GENERAL EDUCATION: KEY FOR SUCCESS FOR ANENTREPRENEURIAL ENGINEERING CAREERDr. Owe G. Petersen, Milwaukee School of Engineering Owe Petersen is Department Chair and professor of electrical engineering and computer science at Mil- waukee School of Engineering (MSOE). He is a former member of the technical staff at AT&T Bell Laboratories and received his Ph.D. degrees from the University of Pennsylvania in 1971. His technical work ranges over topics such as optical data links, integrated circuit technology, RF semiconductor com- ponents, and semiconductor component reliability. He is a Senior Member of the IEEE and an ABET EAC Program Evaluator in electrical engineering.Dr. R. David Kent, Milwaukee
taken place in the laboratory rather on the battlefield. Iam thinking that the truly epoch-making event of the year may be man’s first successful attemptto release atomic energy, through the isolation of Uranium 235.” (Sarnoff 1941: 37) In keepingwith his reputation as a visionary, Sarnoff projects a utopian scenario: With atomic power, people may be able to light, heat, ventilate and refrigerate their homes with ease and at trifling expense. Ships, railway trains, automobiles and airplanes may be fueled for life at the time they are built. Men may carry in their pockets personal radio telephones which will enable them to communicate through the world. A myriad of new products
Paper ID #11619Teaching Innovation and Economic Content to Materials Science and Engi-neering Students: Innovation for Materials Intensive Technologies and In-dustriesDr. Robert A Heard, Carnegie Mellon University Dr. Heard holds a Teaching Professor in the Materials Science and Engineering Department at Carnegie Mellon University. Past work includes activities as an industrial consultant, entrepreneur/president of two companies, and vice president positions in several engineering companies. His experience lies largely in the development and application of specialized new technologies and business opportunities, having
Engineering from the USAF Academy in Colorado Springs, Colorado and his M. S. in Engineering from Princeton University in Princeton, New Jersey. After serving as USAF pilot in KC-135 and KC-10 aircraft, he completed his DPhil in Engineering Sciences at the University of Oxford, United Kingdom and returned to the USAF Academy to teach heat transfer and propulsion systems. At Baylor University, he teaches courses in laboratory techniques, fluid mechanics, energy systems, and propulsion systems, as well as freshman engineering. Research interests include renewable energy to include small wind turbine aerodynamics and experimental convective heat transfer as applied to HVAC and gas turbine systems
knowledge of life-science-based products and processes.There have been numerous reports of current and projected shortages of human resourcespossessing the required knowledge in the growing industry.4A need exists to prepare students for a global working environment and characteristicssuch as creativity, the ability to work on an interdisciplinary team and transfer newknowledge in innovative ways are necessary. But how do you teach students creativityand innovation? How do you teach students to work effectively and collaborate indiverse groups to solve interdisciplinary problems that tend to be ill-defined? In order tobegin addressing some of these questions, an existing, introductory biotechnology coursewas adapted as an entrepreneurial option for
Treuren is an Associate Professor in the Department of Engineering at Baylor University. He received his B. S. in Aeronautical Engineering from the USAF Academy in Colorado Springs, Colorado and his M. S. in Engineering from Princeton University in Princeton, New Jersey. After serving as USAF pilot in KC-135 and KC-10 aircraft, he completed his DPhil in Engineering Sciences at the University of Oxford, United Kingdom and returned to the USAF Academy to teach heat transfer and propulsion systems. At Baylor University, he teaches courses in laboratory techniques, fluid mechanics, energy systems, and propulsion systems, as well as freshman engineering. Research interests include renewable energy to include small wind
teaching paradigm to learningparadigm that is based on the discovery approach. One must remember that the ultimate goal ofthe discovery approach, however, is to deliver the needed information to learners in the bestpossible manner, that suits the receiver’s optimum learning style. The author also strongly recommends and encourages students to utilize the resourcesthat are readily available at the university, such as University Library, Divisional Documents,Departmental Research Reports, Computer Laboratory, Writing Center, etc. 1. Discovery approach utilizes five principles and this has been documented in Appendix A. 2. Discovery Based ISD is recorded in Appendix B. According to Reuben Tozman, Instructional Systems Design is the
Paper ID #15515Develop a New Mobile-Optimized Remote Experiment Application for Mo-bile LearningMr. Qianlong Lan, Texas Southern University Dpt. of Computer Science Graduate StudentMr. Ning WangDr. Xuemin Chen, Texas Southern University Dr. Xuemin Chen is the founding Director of Virtual and Remote Laboratory and an Associate Professor of Electrical and Computer Engineering at the Texas Southern University.Dr. Gangbing Song, University of Houston (CoE)Dr. Hamid R. Parsaei, Texas A&M University at Qatar Hamid R. Parsaei is a Professor of Mechanical Engineering and Director of Academic Outreach Office at Texas A&M
appointment as an Assistant Research Scientist, Dr. Tadd began teaching part time in the Chemical Engineering Department. He has taught the junior heat and mass transfer laboratory course, ChE 360, and the senior-level process design and simulation course, ChE 487. Dr. Tadd officially joined the Chemical Engineering faculty as a full-time lecturer in Fall 2013, teaching the process design course senior design and the junior year separations course, ChE 343. Most recently, Dr. Tadd has been developing an elective course on statistics and applications to industrial quality, including an overview of SPC, Six Sigma terminology and techniques, and basic design of experiments.Ms. Elaine Wisniewski, University of Michigan Elaine
effective teamsand establishing performance goals, and 5) Applying systems thinking to solve complexproblems. The first two modules were integrated into freshman classes, the third into asophomore class, the fourth into third year laboratory courses, and the fifth into senior designcourses. This paper describes the learning outcomes and the reinforcement activities conductedin the courses into which they were integrated for two of these modules. The findings of themodule specific surveys and the assessment results are also presented.IntroductionHaving good technical skills is necessary but insufficient by itself for an engineering graduate todevelop as a leader and innovator.1 In today’s environment, engineering graduates must alsopossess an
Paper ID #24847Combining Flipped Classroom and Integrating Entrepreneurially MindedLearning in DC Circuit Analysis and Design CourseDr. Jing Guo, Colorado Technical University Dr. Jing Guo is a Wireless Device Applications Engineer at Keysight Technologies and an adjunct profes- sor at Colorado Technical University (CTU) . She was a Professor in Engineering Department at Colorado Technical University. She has 14 years of teaching experience at the university level and taught over 30 different undergraduate and graduate courses in Electrical and Computer Engineering area.Prof. John M. Santiago Jr, Freedom Institute of
assess their effectiveness.Inquiry-based Hands-on Experiments in Neuroscience The focus of this project is to expand the opportunities available to actively engagestudents in hands-on learning and foster an entrepreneurial minded learning environment in aneuroscience laboratory course. This project is a seed grant to pilot the activities this fall andassess the effectiveness of the interventions being proposed in a neuroscience course and in anintroductory engineering course as well.Lessons Learned and Moving Forward Prior to the Teaching Institute, faculty in STEM fields outside of engineering did nottypically associate EML as being a viable tool worth integrating into their classroom. However,they saw significant value in using
uses and value of the EX-5515A. Acollaboration between JU and Engineer Inc. was established to create an aftermarket selection ofnew coupons made from more diverse materials and using different fabrication methods thanPASCO’s available samples. Of interest are samples essentially identical to one of the ninesample types available from PASCO but possessing one differentiating aspect or feature.Changing one sample attribute allows apparatus users to explore and compare how modificationsimpact the stress-strain curve. This added feature dramatically enriches the utility of EX-5515Aas a laboratory teaching tool. It allows students to explore stress-strain sample properties beyondmaterial composition into areas such as shape factors, stress
laboratory explorations and adesign project that were designed to expose students to different disciplines and teach technicalcommunication skills. These one-day laboratory experiences and multi-day design project werenot designed with EML in mind, however, as the university incorporates EML into itscurriculum, how well these labs already incorporate these principles is of interest. Therefore, thispaper will investigate: How much EML is already incorporated into the laboratory and designproject curriculum and which areas of EML do each exploration lack? To investigate this task,each lab was coded against an EML curriculum objective matrix that was developed to designand evaluate EML curriculum. This facilitated quantification as to how well each
, acquisition development and operation research support while in the United States Air Force. He currently has over 16 years of teaching experience at the university level and taught over 40 different graduate and undergraduate courses in electrical engineer- ing, systems engineering, physics and mathematics. He has over 30 published papers and/or technical presentations while spearheading over 40 international scientific and engineering conferences/workshops as a steering committee member while assigned in Europe. Professor Santiago has experience in many engineering disciplines and missions including: control and modeling of large flexible space structures, communications system, electro-optics, high-energy lasers
matchedset of non-participants.As a result, programs that expose students to engineering experiences and/or hands-on projectswith entrepreneurs thinking early might have a greater chance of both enticing students to persistand interesting them in specific sub-fields of engineering. Page 24.758.2 2. Project BackgroundFrom Pre-K to Graduate programs, each level of education has its own values and expectedoutcomes. The teaching methods and materials used at each level of education are chosen tofulfill its own purpose. However, there should have some specific projects or concepts that maybe used in different levels of education without altering the