Asee peer logo
Well-matched quotation marks can be used to demarcate phrases, and the + and - operators can be used to require or exclude words respectively
Displaying all 12 results
Conference Session
SE Capstone Design Projects, Part I
Collection
2011 ASEE Annual Conference & Exposition
Authors
Elisabeth W. McGrath, Stevens Institute of Technology; Susan Lowes, Institute for Learning Technologies, Teachers College/Columbia University; Chris Jurado, Stevens Institute of Technology; Alice F. Squires, Stevens Institute of Technology
Tagged Divisions
Multidisciplinary Engineering, Systems Engineering
materials, faculty characteristics,student characteristics) leads to the largest student gains in (1) SE learning; (2) interest in SEcareers; and (3) interest in DoD problems and careers?This research is being conducted in the context of 14 “capstone” courses, in most cases as an Page 22.1277.2integrative culminating, project-based course involving teams of students working together onthe development of a product or prototype that addresses a real Department of Defense (DoD)need. Implemented as pilot courses in eight civilian and six military universities, most of whichare members of a SE-focused University Advanced Research Center, or UARC based at
Conference Session
Systems Engineering Division Technical Session 2
Collection
2017 ASEE Annual Conference & Exposition
Authors
Cassandra M Birrenkott, South Dakota School of Mines and Technology; Shaobo Huang, South Dakota School of Mines and Technology; Marius D Ellingsen, South Dakota School of Mines and Technology; Karim Heinz Muci-Kuchler, South Dakota School of Mines and Technology; Mark David Bedillion, Carnegie Mellon University; John Ziadat, South Dakota School of Mines and Technology
Tagged Topics
Diversity
Tagged Divisions
Systems Engineering
joining Carnegie Mellon University as a Teaching Faculty in August 2016. Dr. Bedillion’s research interests include distributed manipulation, control applications in data storage, control applications in manufacturing, and STEM education.John Ziadat, South Dakota School of Mines and Technology Mr. Ziadat received his Bachelor’s degree in Mechanical Engineering from the South Dakota School of Mines & Technology (SDSM&T) in 2014 before going to work for Space Exploration Technologies (SpaceX) in Hawthorne, CA as a Mechanical Design Engineer. In 2015, his decision to pursue graduate studies in Mechanical Engineering led him back to SDSM&T, where his thesis topic involves the numer- ical simulation of ballistic
Conference Session
Systems Engineering Division Technical Session 4
Collection
2014 ASEE Annual Conference & Exposition
Authors
Eva Andrijcic, Rose-Hulman Institute of Technology; William D. Schindel, ICTT System Sciences; Craig G Downing, Rose-Hulman Institute of Technology
Tagged Divisions
Systems Engineering
protection, interdisciplinary engineering education, and risk education.Mr. William D. Schindel, ICTT System Sciences William D. Schindel is president of ICTT System Sciences, a systems engineering company, and devel- oper of the Systematica Methodology for model and pattern-based systems engineering. His 40-year engineering career began in mil/aero systems with IBM Federal Systems, Owego, NY, included ser- vice as a faculty member of Rose-Hulman Institute of Technology, and founding of three commercial systems-based enterprises. He has consulted on improvement of engineering processes within automotive, medical/health care, manufacturing, telecommunications, aerospace, and consumer products businesses. Schindel
Conference Session
Systems Engineering Curriculum and Programs
Collection
2012 ASEE Annual Conference & Exposition
Authors
Alice F. Squires, Stevens Institute of Technology; Timothy L.J. Ferris, University of South Australia; Joseph J. Ekstrom, Brigham Young University; Mary D. VanLeer, Perceptive-Systems; Garry Roedler, Lockheed Martin
Tagged Divisions
Engineering Management, Industrial Engineering, Systems Engineering
AC 2012-5046: DEFINING THE CORE BODY OF KNOWLEDGE (COR-BOK) FOR A GRADUATE PROGRAM IN SYSTEMS ENGINEERING: AWORK IN PROGRESSDr. Alice F. Squires, Stevens Institute of Technology Alice Squires is Manager of Systems Engineering at Aurora Flight Sciences and an adjunct systems engi- neering faculty for the School of Systems and Enterprises at Stevens Institute of Technology. She is one of many authors on the Systems Engineering Body of Knowledge (http://www.sebokwiki.org/) and the Graduate Curriculum for Systems Engineering (http://bkcase.org/grcse-05). She was previously a Senior Researcher for the Systems Engineering University Affiliated Research Center (SE UARC) and Online Technical Director for the School of
Conference Session
Developing Systems Engineering Curriculum, Part I
Collection
2011 ASEE Annual Conference & Exposition
Authors
Alice F. Squires, Stevens Institute of Technology; Jon Wade, Ph.D., Stevens Institute of Technology; Douglas A. Bodner, Georgia Institute of Technology; Masataka Okutsu, Purdue University; Dan Ingold, University of Southern California; Peter G. Dominick Ph.D., Stevens Institute of Technology, W.J. Howe School of Technology Management; Richard R. Reilly, Stevens Institute of Technology; William R. Watson, Purdue University; Don Gelosh, ODDRE/Systems Engineering
Tagged Divisions
Systems Engineering
and Tools (ASSETT), Inc. Alice previously served as a senior engineering manager for General Dynamics (GD), Lockheed Martin (LM) and as a technical lead for IBM. Alice is a lifetime member of Beta Gamma Sigma (Business), Tau Beta Pi (National Engineering), and Eta Kappa Nu (National Electrical Engineering) Honorary Societies and is an International Council on Systems En- gineering (INCOSE) Certified Systems Engineering Professional (CSEP) in both base and Acquisition (CSEP-Acq). She is in the process of completing her doctorate dissertation in ”Investigating the Relation- ship Between Online Pedagogy and Student Perceived Learning of Systems Engineering Competencies” and her research interests include systems
Conference Session
Technology and Equipment to Improve IE Instruction
Collection
2012 ASEE Annual Conference & Exposition
Authors
Dave Yearwood, University of North Dakota; Alex Johnson, University of North Dakota
Tagged Divisions
Engineering Economy, Engineering Management, Industrial Engineering, Systems Engineering
second research questionFor the second research question, faculty and industry acceptance of smaller lathes as viablealternatives to their industrial size cousins was explored. The ability of the smaller bench-toplathes to perform accurate work was explored in the pilot study. It would appear, based on theresults from this limited pilot study, that both the bench-top and the industrial lathes are capableof producing test bushings within the specified .005” tolerance range. It should be noted,however, that this pilot study was the result of tests done by only two graduate students, and anexpanded study utilizing a much larger cross section of technology students would be necessaryto determine whether the initial findings could be replicated
Conference Session
Systems Engineering Division Technical Session 1
Collection
2017 ASEE Annual Conference & Exposition
Authors
Dominic M. Halsmer P.E., Oral Roberts University; Robert P. Leland, Oral Roberts University; Emily Dzurilla
Tagged Divisions
Systems Engineering
nature. The final project report includes a section where the students areencouraged to reflect on the quality of their experience as it pertains to their understanding ofsystems engineering. Student surveys are also conducted in an effort to assess the impact of thecourse and elicit feedback on how the course may be improved.Previous Design Explorations in Engineering Education via Systems EngineeringCourses involving integration and testing of complex hardware systems are not new toengineering education. In 2012, faculty at St. Louis University reported on a systems engineeringcourse where students gained hands-on experience with the development of a small satellite.They claim, “It is very important to use real hardware for practicing the
Conference Session
SE Capstone Design Projects, Part I
Collection
2011 ASEE Annual Conference & Exposition
Authors
Keith G. Sheppard, Stevens Institute of Technology; John A Nastasi, Stevens Institute of Technology; Eirik Hole, Stevens Institute of Technology; Peter L. Russell, Stevens Institute of Technology
Tagged Divisions
Multidisciplinary Engineering, Systems Engineering
approach into the existing curriculum by creating aframework of educational and organizational components that integrates discipline-specificsenior design and special projects courses at both the undergraduate and graduate level. Byincluding graduate students as well as external advisors, we anticipate providing a level ofprofessionalism, experience and knowledge that would not be possible on an undergraduate-onlyproject, also giving context to the career aspects of Systems Engineering for all studentsinvolved.Project DescriptionThe Stevens project, which is design/build, has been conducted over two semesters and involved4 undergraduate sub-teams from Mechanical Engineering, Engineering Management, Electrical& Computer Engineering and Civil
Conference Session
Developing Systems Engineering Curriculum, Part II
Collection
2011 ASEE Annual Conference & Exposition
Authors
Agnes Galambosi, University of North Carolina, Charlotte; Ertunga C. Ozelkan, University of North Carolina, Charlotte
Tagged Divisions
Systems Engineering
sustainability in technology education.Borchers et al.[13] gave a detailed example of an undergraduate course in environmental designand manufacturing, while Lynch-Cary and Sutherland[14] discussed how to integrate principlesand practices of sustainability into the industrial engineering curriculum.Kumar et al.[15] discussed infusing sustainability principles into manufacturing and mechanicalengineering curriculum and describing challenges of the process and a benchmarking study atMichigan Tech. They concluded that the three main barriers were lack of accreditation processimprovement, conventional thinking of some faculty members and company expectations andrecruiting trends. Christensen[16] investigated how deans and directors at selected 50 globalMBA
Conference Session
Systems Engineering Division Technical Session 2
Collection
2017 ASEE Annual Conference & Exposition
Authors
Karim Heinz Muci-Kuchler, South Dakota School of Mines and Technology; Mark David Bedillion, Carnegie Mellon University; Shaobo Huang, South Dakota School of Mines and Technology; Cassandra M Birrenkott, South Dakota School of Mines and Technology; Marius D Ellingsen, South Dakota School of Mines and Technology; Walelign Messele Nikshi, South Dakota School of Mines and Technology; John Ziadat, South Dakota School of Mines and Technology
Tagged Divisions
Systems Engineering
include Computational Mechanics, Solid Mechanics, and Product Design and Development. He has taught several different courses at the undergraduate and graduate level, has over 50 publications, is co-author of one book, and has done consulting for industry in Mexico and the US. He can be reached at Karim.Muci@sdsmt.edu.Dr. Mark David Bedillion, Carnegie Mellon University Dr. Bedillion received the BS degree in 1998, the MS degree in 2001, and the PhD degree in 2005, all from the mechanical engineering department of Carnegie Mellon University. After a seven year career in the hard disk drive industry, Dr. Bedillion was on the faculty of the South Dakota School of Mines and Technology for over 5 years before joining
Conference Session
SED Technical Session: Instructional Experiences
Collection
2019 ASEE Annual Conference & Exposition
Authors
Kirsten A. Davis, Virginia Tech; Alejandro Salado, Virginia Tech; Thomas A. McDermott, Stevens Institute of Technology
Tagged Divisions
Systems Engineering
development of systems thinking and innovative thinking skills in engineering students. Before returning to graduate school, Kirsten worked for several years as a project manager and analytics engineer in the transportation industry.Dr. Alejandro Salado, Virginia Tech Dr. Alejandro Salado is an assistant professor of systems science and systems engineering with the Grado Department of Industrial & Systems Engineering at Virginia Tech. His research focuses on unveiling the scientific foundations of systems engineering and using them to improve systems engineering practice. Before joining academia, Alejandro spent over ten years as a systems engineer in the space industry. He is a recipient of the NSF CAREER Award, the
Conference Session
Systems Engineering Education and K-12
Collection
2012 ASEE Annual Conference & Exposition
Authors
Charles S. Wasson, Wasson Strategics, LLC
Tagged Divisions
Engineering Management, Industrial Engineering, Systems Engineering
world, making decisions, or communicating views. • Plug & Chug Paradigm - Represents a traditional engineering teaching model in which students Plug a value into an equation and Chug out an answer for solving classical boundary condition problems. • Design-Build-Test-Fix Paradigm – An ad hoc, iterative process traceable to scientific inquiry that lacks an insightful methodology in which engineers: 1) design an entity, 2) build it in the lab, 3) test it, and 4) fix, rework, or patch the design or its physical implementation in a seemingly endless loop until convergence at a final solution is achieved or schedule and cost resources are depleted