. The professor that wishes to treat such areas will be most successful in a laboratoryenvironment that includes computer monitor projection capabilities, as well as individual workstations. Inexamining the expanded utilization possibilities of engineering computer laboratories, though, other issues mustbe addressed before a strategy of implementation can be advocated. To explore the role of informationtechnology in the college classroom, we must more clearly define its missions in both the educationenvironment and the engineering workplace. We can then identify key areas that information technology andservices (IT&S), and specifically engineering computer laboratories, can assist in achieving these goals,supported by examples from the
I .—-. Session 3230 Use of Hypermedia Modules on CD-ROMs to Teach Communication Skills in Engineering Laboratories — Sandra Gronhovd, S. L Mehta North Dakota State UniversityA b s t r a c t The ability to communicate is essential for engineering students, and coursework is frequently offered toprovide these skills: However
, non-ideal process in an engine or the extra work while the ratio of the actual efficiency of an engine to associated with each non-ideal proo%s in an air the ideal efficiency of an engine with the same heat conditioner, but the existing text books do not source and sink describes the 2nd Law eftkiency of a provide good examples of the applications of these cycle. techniques. Thus, a paper was presented and published for the 1995 conference to demonstrate the Simiiarly, two methods can also be defined for use of these techniques for fuel burning Carnot and evaluating the overall performance of a cycle. The Rankine cycles. This paper presents similar fwst
and prevention.Simultaneously, business and industry are increasingly seeking graduates withappropriate background and training in this emerging and lucrative field of biomedicalengineering and technology. The United States Labor Department supports this area ofconcentration by forecasting a job growth of 31.4 percent through 2010, double the ratefor all other jobs combined. The aging U. S. population as well as the increase demandfor improved medical devices and systems, are contributing to this increase in demand.Women will be motivated so that the stagnant or even decreasing 20 percent level ofenrollment in engineering and technology fields nationwide may be lifted byunderstanding that the careers in this area are exciting, rewarding
universities.Whereas the nation has developed an excellent system of graduate education for basic researchduring the 1960’s, 70’s, 80’s, and 90’s, it has not placed an equal emphasis on professionallyoriented graduate education to continue the professional development of our nation’s engineeringgraduates who enter engineering practice in industry. As a consequence, America’s primaryengineering resource for creative technological development and innovation in industry has notbeen fully developed to its potential during the last three decades.If we are to develop professionally oriented curriculum that is more aligned to the needs of theU.S. engineering workforce in industry, in order to ensure the nation’s competitiveness forworld-class technology development
, including spreadsheets. The weights corresponding to each need go ondifferent rows, and the Learning Objectives run along different columns. Relation matrix elementsare identified as: R(column number, row number) = R(j,i)Likewise, the computed array, S can be expressed as S(column number) = SjThe index “i” varies from 1 to m, where m = the number of learning objectives and the index “j”varies from 1 to n, where n = number of needs. Learning Objectives LO1 LO3 LO3 Needs Weights N1 W1 R(1,1) R (1,2) R (1,3) N2 W2 R
Machine and compare the results with unwelded specimens.ProcedureTwo 6061 aluminum alloy plates (6x4x ¼ in) were welded together using the FSW process. Theweld was performed using tool rotational speed of 1200 rpm, the transverse speed of 4.5 mm/s,and plunging force of 5000 N. The welded plate was cut perpendicular to the welded line toproduce four rectangular strips. The strips were machined using CNC mill to make identicalspecimens for the tensile tests. The five steps of the welded specimens’ preparation and thegeometric characteristics of the test specimen are shown in Figure 3. Figure 3- Procedure Steps for Tensile TestThe recorded operation parameters of the FSW machine during the Al-Al welding processes
draw out guide values and assumptions in theanalysis portion of this project [11]. We asked guides to describe details of the experience,including what was solidified for them. Interviews were conducted via Skype video conference,and were audio recorded, transcribed, and coded.The first author of this study is a member of the raft guide community and thus benefited fromeasy access to a pool of participants for recruitment. Multiple coders to ensure analysis was notbiased. The first participant was a 30-year-old male who is a high school social studies teacher inthe off-season. He has been guiding for 9 years and has taught numerous guide schools in whichhe trained others to become guides. The second participant was a female in her early 20’s
searching. Educational Psychologist, 39, 43–55.Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefsabout knowledge and knowing and their relation to learning. Review of EducationalResearch, 67(1), 88–140.King, P. M. & Kitchener, K. S. (1994). Developing Reflective Judgment: Understanding andPromoting Intellectual Growth and Critical Thinking in Adolescents and Adults. San Francisco:Jossey Bass.King, P.M., & Kitchener, K. S. (2001). “The Reflective Judgment Model: Twenty Years ofResearch on Epistemic Cognition,” in B.K. Hofer and P.R. Pintrich, eds., PersonalEpistemology: The Psychology of Beliefs about Knowledge and Knowing, Mahwah, NJ:Lawrence Erlbaum Associates.King, P. M. & Kitchener, K. S
city in Massachusetts,USA. The 199 participating students worked in pairs and trios. An overview of the curriculum ispresented in Table 1, below. In practice the curriculum lasted 14 days, as teachers provided extratime for learners who needed remediation or extra challenge.We generated data from pre- and post-surveys (N = 120 paired); pre-, post- and follow-upinterviews (14, 17, and two, respectively); students’ design artifacts; and classroom observationsof eight student pairs (including 20 hours of video and 10 hours of screen-capture), all in order toexplore student engagement in practices of computation, engineering, and science. Table 1 Overview of smart-greenhouse curriculum sequence Day(s) Topic
the impact of creating the videos is inprogress and will be reported at the 2019 ASEE Annual Conference.5. Conclusion This project is studying the role of prosocial affordance beliefs about the ECE professionon motivation to persist in the profession. It also seeks to understand whether a simpleclassroom intervention that forces the student to think about the prosocial value of thecourse material can improve their beliefs about the profession, and in turn, their persistenceintensions. 46. References Bardi, A., & Schwartz, S. H. (2003). “Values and behavior: Strength and structure of relations,” Personality and Social Psychology Bulletin
with technology innovations, since computingcapabilities are driving advances in data management and cyber-physical system capabilities. 6 Acknowledgments The authors wish to acknowledge support from Office of Naval Research for grant “HigherEducation Pathways for Maritime Mechatronics Technicians (MechTech)”, Agency ProposalNumber N00014-15-1-2422.ReferencesArciszewski, H. F. R., de Greef, T. E., & van Delft, J. H. (2009). Adaptive Automation in a Naval Combat Management System. IEEE Transactions on Systems, Man & Cybernetics: Part A, 39(6), 1188-1199. doi: 10.1109/TSMCA.2009.2026428Arregi, B., Granados, S., Hascoet, J. Y., Hamilton, K., Alonso, M., & Ares, E
interaction, we hope to identify recommendations wecan make to other parents on how to foster engineering interest in their children, as wellas contribute ideas for activities for K-5 classrooms to reach a wider range of children.AcknowledgementThis material is based upon work supported by the National Science Foundation underGrant No (HRD-1136253). Any opinions, findings, and conclusions or recommendationsexpressed in this material are those of the author(s) and do not necessarily reflect theviews of the National Science Foundation. We would also like to acknowledge thecontributions of the GRADIENT research team members Scott VanCleave, MaggieSandford and Zdanna Tranby for data collection.References 1. Ceci, S., J., & Williams, W. M. (2010
the Simulink model the pulses in thesignal are counted and converted to an angular velocity. Since direction is not important in this setof experiments only one photo interrupter was used. However, a second photo interrupter couldbe added if direction is needed in the future.Motor DriverSince the voltage and current required for the motor are too high to be directly sourced by theRaspberry Pi, an additional power supply and H-bridge were used to drive the motor. A variableDC power supply that has 1.5V increments from 3V to 12V was selected. However, 4 AAbatteries could also be used. The SoftPWM library from the WiringPi libraries was used inanother Simulink S-function driver to generate the pulse-width modulated (PWM) signal to drivethe H
fluid mechanics students for their participation,feedback, and support of this experimental project.References1 Britton, B. K., and Tesser, A., “Effects of Time-Management Practices on College Grades,” Journal ofEducational Psychology, Vol. 83, No. 3, 1991, pp. 405-410.2 Gregory, J. M., W. J. Carter, and P. S. Gregory, The Student's Handbook for Academic Survival in College,McGraw-Hill, 1997.3 Gregory, J. M, Xie, X., and Mengel, S. A., “Active and Passive Learning Connections to Sleep Management,” 33rdASEE/IEEE Frontiers in Education Conference, Boulder, CO, Nov. 2003.4 Gregory, J. M, Xie, X., and Mengel, S. A., “Sleep Management: A Frontier for Improved AcademicPerformance,” Proceedings of the 2003 ASEE Gulf-Southwest Annual Conference, The
Psychological Association, 2012.[2] Koedinger , K. R., E. Brunskill, R. S. Baker, E. A. McLaughlin, and J. Stamper, “Newpotentials for data-driven intelligent tutoring system development and optimization,” AIMagazine, vol. 34, no. 3, pp. 27–41, 2013.[3] Butz, C. J., S. Hua, and R. B. Maguire, “A web-based intelligent tutoring system forcomputer programming,” in Proceedings of International Conference on Web Intelligence, pp.159–165, IEEE, 2004.[4] Hsiao, I.-H., P. Brusilovsky, and S. Sosnovsky, “Web-based parameterized questions forobject-oriented programming,” in Proceedings of World Conference on ELearning, E-Learn, pp.17–21, 2008.[5] Brusilovsky, P. and S. Sosnovsky, “Individualized exercises for self-assessment ofprogramming knowledge: An
, especiallyfor untenured, tenure-track faculty who have expectations for being able to share passions for notonly research but also teaching. The TLC is supporting our professors of practice as theytransition from industry to academia and teaching. The support by the department chair reducesperceived risk of trying new teaching pedagogies. Finally, we are building a diverse communityof faculty dedicated to teaching in a department that has not has a strong teaching community inthe past.Ambrose, S. A., M. Bridges, M. DiPietro, M. C. Lovett and M. K. Norman (2010). How learning works : seven research-based principles for smart teaching. San Francisco, CA :, Jossey- Bass.Cox, M. D. (2004). "Introduction to faculty learning communities." New
] A. K. Ambusaidi, and S. M. Al-Bulushi, “A longitudinal study to identify prospective science teachers’ beliefs about science teaching using the draw-a-science-teacher-test checklist,” International Journal of Environmental & Science Education, vol. 7, no. 2, pp. 291-311, April 2012.[6] K. D. Finson, “Investigating preservice elementary teachers’ self-efficacy relative to self- image as a science teacher’” Journal of Elementary Science Education, vol. 13, no. 1, pp. 31-41, October 2001.[7] R. Hammack, & T. Ivey, “Elementary teachers’ perceptions of engineering and engineering design,” Journal of Research in STEM Education, vol. 3, no. ½, pp. 48-68, 2017[8] C. Cunningham, C. Lachapele, and A
collaboration.AcknowledgmentsThis material is based upon work supported by the National Science Foundation under Grant No.#1525345. Any opinions, findings, and conclusions or recommendations expressed in thismaterial are those of the author(s) and do not necessarily reflect the views of the National ScienceFoundation. This work is done in collaboration with the University of Kansas, Indiana University,Queen’s University at Kingston, University of British Columbia, University of California, Davis,University of Colorado Boulder, and the University of Texas at San Antonio.References [1] C. Baillie and G. Fitzgerald, “Motivation and attrition in engineering students,” European Journal of Engineering Education, vol. 25, no. 2, pp. 145–155, 2000. [2] B. N. Geisinger and D
) Bioinformatics in the post-sequence era. Nat Genet 33 Suppl:305-10. 4. Our cultural commonwealth: The Report of the ACLS Commission on Cyberinfrastructure for the Humanities and Social Sciences, July 18, 2006 5. Buetow, K (2005) Cyberinfrastructure: empowering a “third way” in biomedical research. Science 308(5723): 821-824. 6. Greene, K. and S., Donovan. (2005) Ramping Up to the Biology Workbench: A Multi-Stage Approach to Bioinformatics Education. Bioscene 31(1): 3-11. 7. Rainey, D., Faulkner, S., Craddock, L., Cammer, S., Tretola, B., Sobral, B.W., and O., Crasta. 2007. A project-centric approach to cyberinfrastructure education. TeraGrid 2007. 8. He, Y., R. R. Vines, A. R. Wattam, G
University of Georgia has resulted in over 100 publications and 3 patents. Page 13.1379.1© American Society for Engineering Education, 2008 Variation in computing the Length Factor in the Universal Soil Loss Equation Ernest W. Tollner Abstract The universal soil loss equation, A = R*K*L*S*C*P, estimates average annual soil loss A based on rainfall (R), soil factor (K), length factor (L), slope (S), effective cover factor C, and a practice factor P. In teaching the use of the relationship, students can find values of R on
information is provided: • All pipe sizes and materials • Flow rates coming in or out at points A and B, as shown in the figure Qa = 4 ft3/s A 2 C Q2 Q1 Q3 1 3 B Qb=1 ft3/s Page 11.1386.2 Figure 1. Analysis of a Simple NetworkThe problem has three unknowns, and to solve for them, three independent equations are
193 175 150 132 125 112 S tu d e n ts 100 75 63 50 47 25 12 0 00 01 02 03 04 05 20
-sketched drawings. Theinstructor can use these tools effectively to generate and discuss the correct solutions for theassigned exercises to better guide the students in developing solutions for other problems. Thisapproach to teaching an Engineering Graphics course can be used along-side other traditionalinstructional techniques to further enhance the students’ performance in the course. Page 11.583.10Bibliography1. Navaee, S., “Use of WebCT in Delivering Instructions in Engineering,” Proceedings of the ASEE Annual Conference, Albuquerque, New Mexico, 2001.2. Navaee, S., Das, N.K., “Utilization of MATLAB in Structural Analysis,” Proceedings of the
balance of push-and-pull. If thesuspended object gets too close to the electromagnet, the electromagnet should push itaway. Conversely if it falls too low the electromagnet should work at pulling it back up.The LM1820 driver chip has a built-in H-bridge that can reverse polarity of its output andis perfect for this application.Analog Phase-Lead ControllerThe system is open-loop unstable and a phase-lead controller is needed to increase thephase margin of the system to stabilize it. The open-loop transfer function of the system 6.82 × 10 7can be found using the Bode diagram approach to be G p ( s ) = 2 , with its
Page 23.825.6To study the stability, transient and steady state responses, sampling time of 0.5 msec is used.The motor/gear transfer function, Gm(s) and the sensor transfer function H(s) are obtainedthrough an experiment: Gm(s) = 20/s(s+4), H(s) = 0.6Z-transformation of Gm(s) and D/A yields the following discrete transfer function for the system 27.44 10-7(z + 0.9992) G(z) = (z-1)(z-0.9923)Case 1 (no controller).The system is tested without a controller. The transient response is satisfactory compared to thetheoretical calculation, the rising portion of the actual and expected responses
Taking things (music box, toaster, boxes) apart or put them back together.Outreach § Programs Girl Scouts, afterschool programs, space day/camps. § Designed Children’s Museum(s), Aquariums, Science Centers. EnvironmentsEducation § Kits Circuit kits, Lego robotics, and telescopes. § Curricular Helping with homework, giving extra tasks (i.e. math quizzes, workbooks in summer) Page 23.501.4Informal DiscussionsA vast majority of the parents (n=96%) mentioned that informal discussions were part oftheir repertoire for
”The final equation then becomes: µ = [W * La * R2 * sin θ * (Rc – Rd)] [0.65797 * Rd * Rd * Ld * Rc * R1 * RPM]with units of pounds force seconds per square foot. Students are also given the exercise of unitsconversion from the above viscometer-dependent units to strengthen their understanding of theuniversality of viscosity between measurement systems. Figure 3 – Viscometer Geometry3) Test FluidFor the purpose of calibration a common, published fluid, SAE 30W motor oil is used. (2) It hasthe following viscosity properties; 0.350 Pa s @ 68F and 0.019 Pa s @ 176F. As the spreadsheetbelow shows, performance of this design was shown to be quite good. Deviation ranged
Assiout University which belongs tothe South of Egypt and 35% for Alexandria University, the national average being 30.5%.This is to be compared to 50.16% ratio for the total university population. It should also benoted that this feature is not new although the figures grew steadily in the last five years(Fig.3). In the early 1960's this ratio was almost 10%.The female graduates represent more than 50% of Architecture and Chemical Engineeringgraduates, around 30% of those of Electrical Engineering, 25% of Civil Engineering andaround 15% of the Mechanical Engineering ones (Fig.4).On the staff side, the percentages are less pronounced by are still much larger than thecorresponding in western engineering educational institutions
66.4 1.0 Competitive Analysis Physically moving patient 1.0 4.0 1.0 5.0 1.0 5.0 1.0 Target Value 4.0 5.0 3.0 5.0 4.0 5.0 3.0 2 deg min in/s