engineering students and eightpreservice teachers. T-tests were used to compare participants’ pre-/post- scores on a codingquiz. A post-lesson written reflection asked the undergraduate students to describe their roboticslessons and what they learned from interacting with their cross disciplinary peers and thefifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’perceptions were generally positive, recounting enjoyment interacting with elementary studentsand gaining communication skills from collaborating with non-technical partners. Preserviceteachers demonstrated gains in their technical knowledge as measured by the coding quiz, butreported lacking the confidence to teach coding and robotics independently
thedepartment. To help with minimizing the potential for violation of academic integrity and toencourage students to reflect on their proposed solutions, they were asked to prepare a screencastand verbally explain how they solved the problem in addition to submitting their writtensolutions.As discussed in our previous study1, the changes we applied to the course had a promising effecton students’ performance in this course and a positive effect on their final exam grades. Inaddition, in the mid-quarter and end of quarter surveys in spring 2018, students cited the benefitsof offering the lecture content in the video format including the opportunity to review thematerial before and after class and having extra practice and discussion time in class. In
leadershipskills as learning outcomes. 1. IntroductionEmployability of graduates is a trivial question that has been focused upon in the field ofengineering education for decades. There exists a gap between the skills possessed by graduatesand the industrial requirement. This is often reflected in the form of lack of professional skillswhich involves teamwork and leadership skills [1].The future of the industrial sector, represented by Industry 4.0 has specific requirements liketeamwork and leadership (T&L) skills, self-regulated learning, and critical thinking, which needsto be satisfied by Education 4.0 [2]. T&L skills are highly rated and required skills in theindustry [3]. The competencies defined in Engineers Australia stage 1 [4], consist
academic year from 87professional ethics requirements), fostered in-class separate events. Given the large number of events and thediscussion of key points, and required students to reflect on wide variety, not all events had a strong engineering focus,their response and personal connection to the given topic. but a majority of events did.This seminar also supported the cross-cutting themes as As part of the large year-end outcomes survey, studentsdiscussed below. Overall, this seminar was intended to help responded to the prompt “Professional Development eventsstudents dispel misconceptions of engineering and make made me feel more like an engineer” on a Likert scale. Of
metacognition and its critical role in learning. Therefore, the metacognitiveindicators also provide a path for instructors to understand metacognition better whilesimultaneously yielding valuable information about what students are doing in their attempts tolearn the content of their courses. The indicators enable conversations between instructors andstudents about learning processes where the instructors can respond and suggest specific ways ofprocessing, thinking about, or using the content to learn it better or more efficiently. Instructorsmay well find themselves reflecting on their own learning experiences – in general andspecifically within their area of expertise – which can provide powerful points of connectionwith their students.The next
student.Research • 6-page midterm report • end of first semester of projectProject (½ way) • 50-page thesis • end of second semester of project (project completion)For-Credit • 3-page Australian Development • before SummitCourse Context research report(EfaHC) • 1-page Humanitarian Engineering • before Summit Reflection • 3-page appropriate technology • before Summit workshop report • 4-page Design Concept Proposal • completed on Summit, submitted
’ designalternatives and matrices. Studies show that student learning improves when they are exposed tothe ideas of others, when they respond to the questions and critique of peers, when they formmore substantial justifications for their views, and when they evaluate competing ideas throughargumentation [24, 25]. Following the gallery walk student teams are given time to reflect oncritical feedback and revise their own work. Effective reflection includes keeping a record ofchanges made and justification of those changes. During stage five, prototypes of the bestdesigns – as determined through matrix scoringand argumentation in the previous stages – arebuilt and tested (Fig. 3). Importantly, this is afluid, iterative process; iterative design
require a paradigm shift in re-conceptualizing their role as a teacher. Due to this difficulty, tapping both individual andcollective capacity are best within the context of professional learning communities (PLCs),which are characterized by shared norms and values, reflective dialogue, de-privatization ofpractice, collective focus on student learning, and collaboration. These PLCs set the foundation,so teachers can begin inquiry into their practice in a new way for increased student learning.The integration of Professional Learning Communities and Project-Based Learning serve toaddress the issues discussed above. Currently, the North Texas STEM (Science, Technology,Engineering and Math) Center is collaborating with the Waco Independent School
resultsprovide motivation for design instructors to consider helping their students manage stress inappropriate ways, to reinforce the idea that the design experience is a key opportunity totransition to professional work habits, and to encourage students to reflect on their experiencesand their learning. These attributes were correlated with better overall ratings of learning andinstruction. Page 14.476.2 1IntroductionDesign courses are, in many respects, different from other engineering courses. While studentsmay consider traditional courses as discrete or compartmentalized “units” of learning orconcepts
, fully supported group oral presentation.The revised learning objectives reflect continuing efforts within the Praxis Sequence to avoidprescribing particular tools and processes, in favour of providing more abstract goals thatstudents can meet using their choise of specific approaches.The learning objectives for Praxis III, as with all Praxis courses, cover both design andcommunications. This pairing of objectives is intended to emphasize that a design is only asgood as the effectiveness with which it is communicated.Design challengeA key goal during the design of Praxis III was ensuring that students did not perceive thedesign as being a “paper project” that existed solely within the context of the course, butrather perceive the course as
cultural knowledge reflecting their specific community into mathand science curricula.The findings presented are based on surveys, phone interviews and observationsconducted with teachers and CAP members representing each elementary school. Thefindings indicate that it is critical to have fully functioning CAPs, as their input andsupport is tantamount to the success of the professional development, and in turn, haseffects class-wide and school-wide. Page 14.1314.2 1IntroductionThe American Indian population of the United States was estimated at 1.86 million in2000, with a total of about 4 million reported
Assessment Activities Program Objective 1 - Increase students’ capacity to engage in “real world” problem solving.≠ Participation in inquiry-based laboratory provided ≠ Students wrote lab reports describing students with an opportunity to apply conceptual different components of the laboratory knowledge in a practical, work-like setting. process.≠ Students developed conceptual maps that illustrated ≠ Concept maps were assessed for accuracy. connections between engineering technology concepts. ≠ Students submitted evaluations of mentors.≠ Mentors provided guidance on laboratory activities. This ≠ Mentors were asked to reflect on their strategy has two learning components: 1) helping
) methods effective for certain students but ineffective for others ….” There are several models of learning style preferences. However, the authors recommend Kolb’s Experiential Learning Model7 as a starting point to understand student differences. Experiences can be developed to teach around the Kolb’s cycle by teaching for all four learning styles: Type 1 -- the diverger (concrete, reflective), Type 2 -- the assimilator (abstract, reflective), Type 3 -- the converger (abstract, active) Type 4 -- the accommodator (concrete, active) For example, Experiences in a lab setting can illustrate engineering concepts with the physical materials that perform or fail in
design process represented by Voland18: NeedsAssessment, Problem Formulation, Abstraction and Synthesis, Analysis, Implementation, andReflection. Along with a design-to-construction project, which is a key component in the course,the students are continuously required to apply the process, innovate, and take advantage ofopportunities to reflect on what was learned. This keeps the students involved at every step, andthe instructor is rarely lecturing to a sleepy, inert group. This certainly is a desirable outcome.The students, who often work in teams, appear enthusiastic about their numerous projects andactivities. Through continuous involvement, the engineering design process becomes integral tothe students’ thinking, and they subsequently are
of which correspond nominally to ABET Criteria 3(a) through 3(k).3Outcome 12 describes a requirement for knowledge in a specialized area related to civilengineering; and Outcomes 13, 14, and 15 require understanding of professional practice topicssuch as management, business, public policy and administration, and leadership.The fifteen outcomes of the BOK reflect five major areas of emphasis: • Fundamentals of math, science, and engineering science • Technical breadth • Breadth in the humanities and social sciences • Technical depth • Professional practice breadthThe association between these “big picture” areas of emphasis and the fifteen BOK outcomes isillustrated in Figure 1 below.In October 2004, the ASCE Board
wholedoes not warrant attention in the curriculum. But given the traditional mission of so many liberalarts colleges of preparing students for active lives as informed citizens, and the desire if notpassion of so many liberal arts college students to change the world and improve the quality ofhuman life, the lack of such introductory courses is evidence of a lingering, and troublesome,blind spot in the liberal arts college environment.In this paper, we—one of us a mathematician with a background in engineering and the other aphilosopher with a background in philosophy of technology and philosophy of engineering—describe and reflect on our experiences in the Fall of 2016 team-teaching Thinking Like anEngineer, a course we developed for first year
ABET and its international trend, the practice of qualityassurance in engineering education within American colleges and universities has gonethrough different stages under the guidance of ABET. Engineering education accreditationpersonnel (ABET managers, staff, accreditors, etc.), engineering education professionals(administrators in engineering departments, engineering faculty, ABET liaison, etc.),engineering students (engineering undergraduates, engineering graduate students, engineeringdoctoral students, etc.) are important stakeholders. Researches based on the StakeholderTheory are mainly reflected in the following aspects, research on stakeholders and their rolein the accreditation process,2 research on evaluation culture in the
, the reflective judgement theory of personal epistemology similarlydescribes epistemic development as an individual’s progression through a series of well-definedstages (King & Kitchener, 1994, 2004). In the reflective judgement model, individuals progressthrough pre-reflective, quasi-reflective, and reflective stages, ultimately viewing knowledge ascontextually-dependent and open to evaluation.Schommer's (1990) beliefs view of personal epistemology purports individuals have a multi-dimensional view of knowledge and that each dimension varies in complexity and sophistication.According to this theory, there are five dimensions that can be used to describe individuals’beliefs about knowledge: “the structure, certainty, and source of
. mention societal impacts of their project as a separate item to consider in design, 2 but they do not provide examples or any further detail. mention societal impacts of their project, perhaps only in passing or in a sentence 1 with all three pillars of sustainability. do not discuss societal impacts of their project. 0ReflectionFinally, we reviewed students’ reflections of how the Community Engagement module impactedtheir understanding of and ability to incorporate preliminary social sustainability principles intheir senior
-engineers. Grunert and Adams(2016) reflect this consensus when they assert that “engineering literacy develops citizensthrough their participation in a culture and society that depends on engineering projects.Engineering literate persons function fully within such a society, participating in engineeringprojects not only insofar as engineering training is required, but also in recognition of the broadersocial impact of those projects.” Their paper highlights an interesting finding from their previousresearch: an “absence of meaningful difference between students in engineering courses of studyand students in non-engineering programs.” Of course, this recognition goes at least as far back as “Improving TechnologicalLiteracy” (2002), in which
saccades instead of reading in a linearfashion. Modern eye tracking system works by reflecting infra-red light on an eye, and recordingthe reflection pattern. Early research [26] in eye tracking showed that, people tend to incorporateregressive fixations and saccades (instead of reading in a linear fashion) when faced withcomprehension difficulty to review their understanding and retention.These eye movement factors represents the amount of cognitive processing involved by anindividual [27]. Cognitive psychologists used eye tracking technology [28], [29] to understandVisual/Verbal and Sequential/Global LS preference of individuals by displaying information ona computer monitor. The results showed that visual learners tend to focus at the pictures
observations and interventions in a system,explaining that ideal observations are not impacted by the observer and won’t be used to promotechange. Since we will reflect on our purposeful observations (interviews), a potential result ofthis process is to promote and implement change, making our data collection process acombination of both observation and intervention (Midgley, 2003). While we hope to fully andaccurately portray the system to analyze it, the observer (interviewer) must be careful not toinfluence the thoughts and expertise of the stakeholder (interviewee). If interviewees areexplaining an ideal system as opposed to the actual system that we want to analyze, theeffectiveness of this systems thinking process significantly decreases
everything that can be learned is transferable, such as psychomotor skills, cognitiveskills, affective attitudes, methods, principles, theories, facts, concepts, relationships, structures,among others[6]. Therefore, universities should prepare integral professionals that articulateglobal knowledge, professional knowledge and work experiences, and recognize the needs andproblems of society to create sustainable and effective solutions. Competencies are the set ofskills, behaviors, and abilities that allow people to reflect on an action and know how to act whensituations are faced, even if the situation occurs in a new context [7]. Since they play a key rolein the process we decided to focus on competencies to better understand transfer of
thedesign cycle [4]. However, few studies have explicitly examined student learning through thelens of the knowledge and practice expectations of a 21st century engineer [14]. Yet, 21st centuryskills have been embraced by the Accreditation Board for Engineering and Technology (ABET)and are included in the standards for engineering programs [15]. The 21st century skills includecollaboration and teamwork, creativity, communication, emotional competency, culturalcompetency, ethics, leadership and management, critical thinking, and content knowledge. Afundamental shift in the ABET engineer paradigm with the adoption of the 21st centuryframework reflects a focus on engineers as being at the service to society. The ABET standardssuggest that there is
does provide may be missing essentialcomponents and the feedback it provides may not be properly timed or targeted [16-28]. Thehomework in the traditional-lecture approach is used for assessment; there are no opportunitiesfor students to practice and receive feedback on their solution prior to being assessed. A relatedproblem is found in the timing of feedback to the students: it occurs after their learning has beenassessed. That is, the correct solution to the homework assignment is made available after theassignment has been submitted. If a student makes a mistake on a homework assignment and,through the feedback, learns from that mistake (so that they will not repeat the mistake), thatlearning is not reflected in the assessment of their
engineering vicarious experiences, they can inform their ownteaching practices and practice reflective teaching as they teach lessons. IntroductionWithin the last decade, there has been a push for engineering to be taught in the K-12 schoolsystem. Integrating engineering into the classroom is especially important due to the expressedneed for engineers from organizations such as the National Academy of Engineering and fromreports like PCAST that predicted a need for one million more STEM professionals by 2020 [1],[2]. In addition to this expressed need, research shows that students begin making career choicesas early as, if not before, high school, so it is important they gain an understanding of
, demonstrate, and maintain), reflected a 15% similarityamong the top 20 most frequently mentioned verbs found in the compared documents.Total and Unique Verb Match. There were 438 total verbs in the AM Curriculum Framework to415 in the AM Competency Model, and of those 16.21% (n=71) and 43.13% (n=179) wereunique verbs, respectively. The UM between the AM Framework and AM Competency Model is23.03% (Low), while TM has a DMS of 0.34 (Very low).Categorized Verbs. Verbs were categorized according to the Cognitive Dimension of Bloom’sRevised Taxonomy to identify similarities and differences between AM Framework and the AMCompetency Model. In Table 3, we see the frequency verbs in each of the categories and thecorresponding percentage of verbs in each of
context and works on the smaller componentsof it, we then experience the process of problem-solving. Climbing the mountain requires bothlinear and non-linear approaches that promote higher order thinking and critical skills. Thecomplexity of the problem encourages us to think reflectively and critically. The dynamic learningenvironment poses challenges but also opportunities for interdisciplinary collaboration.Finally, when the mountain has been climbed and we have safely returned to our base camp, weevaluate our mountain climbing experience, analyzing our successes and difficulties, and drawinglessons that can be applied to similar challenges in the future.This is the process we encouraged our research experiences for undergraduates (REU
negative (IntrojectedRegulation, in which avoidance of guilt or other negative feelings serves as a motivator; ExternalRegulation, in which an obligation or demand from work or elsewhere serves as a motivator; andAmotivation, where the individual is unsure of why he/she is doing something, and is unable toarticulate a motivating factor) [15]. As has been the case with several other groups of programteachers, respondents provided high levels of agreement with statements reflecting the two morepositive types of motivation (Intrinsic Motivation, mean = 5.08, and Identified Regulation, mean= 4.41), and provided low levels of agreement with statements reflecting the three more negativetypes of motivation (Introjected Regulation, mean = 2.25; External
. Prior to arriving at Purdue Univer- sity, he earned a master’s degree in the department of mathematics at the University of Cincinnati in the USA. He is currently writing a dissertation on the pre-service teachers’ understanding of geometric re- flections in the USA. His dissertation explores pre-service secondary mathematics teachers’ motion and mapping views and contributes to current research by offering insights into the development of an under- standing of geometric reflection. He is also working as a research assistant in Engineering Education. His work is focused on student learning and interest engineering design to teach engineering, science, and mathematics.Peter Wesley Odom, Purdue University, West