Minneapolis, MN
August 23, 2022
June 26, 2022
June 29, 2022
PCEE Session 12: STEM, Technology, and Engineering Education
19
10.18260/1-2--40701
https://peer.asee.org/40701
835
Dr. Emily Dare is an Associate Professor of Science Education at Florida International University. Dr. Dare's research interests focus on K-12 STEM education. In particular, she is interested in supporting science teachers’ pedagogy while also exploring their beliefs about teaching and learning. As science classrooms shift towards integrated STEM approaches that include engineering design as a central component, this is especially critical. Additionally, Dr. Dare has a passion for working with K-12 students to understand how changes in classroom instruction towards these integrated STEM approaches impact their attitudes towards and beliefs about STEM fields. In particular, she examines methods that positively impact girls, which may increase the number of women pursuing careers in STEM-related fields where they are currently underrepresented.
Associate professor in the Social Sciences department at Michigan Technological University with a background in computational social science, research design, and social science research methods for assessment and evaluation purposes
Elizabeth A. Ring-Whalen is an Assistant Professor of Education at St. Catherine University in St. Paul, MN and the Director of the National Center for STEM in Elementary Education (NCSEE). She received her PhD in Curriculum and Instruction - STEM Education from the University of Minnesota in 2017. Her research focuses on STEM education and what this looks like in PreK-12 classrooms and explores teachers’ beliefs of integrated STEM as well as how these beliefs influence teachers’ practices and student achievement in the classroom. Alongside this research, she has worked to explore the attitudes and beliefs teachers hold about cultural diversity and teaching culturally diverse students. She recently secured and acts as a PI on an NSF grant whose project outcomes aim to develop a K-12 STEM observation protocol that can be used in a variety of educational contexts through an online platform.
Despite the popularization of integrated approaches to teaching science, technology, engineering, and mathematics (STEM) in policy documents, standards, and classrooms over the past several years, research related to the teaching of K-12 integrated STEM education continues to be impeded by the lack of observational tools available to education researchers. The work presented here uses a new observation protocol – the STEM Observation Protocol (STEM-OP) – designed for measuring the degree of integrated STEM teaching in K-12 science and engineering classrooms. The STEM-OP includes 10 items with four descriptive levels for each item (scored 0-3): 1) Relating content to students’ lives, 2) Contextualizing student learning, 3) Developing multiple solutions, 3) Cognitive engagement in STEM, 5) Integrating STEM content, 6) Student agency, 7) Student collaboration, 8) Evidence-based reasoning, 9) Technology practices in STEM, and 10) STEM career awareness. In this study, we used the STEM-OP to explore current practices in integrated STEM education, including comparisons across science content areas (Physical, Earth, and Life Science) and grade levels (elementary, middle, and high school). Our data set included a total of 2,030 video-recorded classroom observations from K-12 science classrooms where integrated STEM teaching was enacted through the use of an engineering design challenge to learn and apply science and mathematics content. Our results suggest that current K-12 science teachers miss opportunities in their lessons to relate content to students’ lives, develop multiple solutions, use evidence-based reasoning, engage students in technology practices, and promote STEM career awareness. However, results from crosstab and non-parametric analyses reveal that various components of integrated STEM education occur more frequently and at higher levels in Physical Science and elementary classrooms compared to Life/Earth Science and middle/high school classrooms, respectively. Our work illustrates various places where integrated STEM education could be focused, including a better representation of engineering through developing multiple solutions and using evidence-based reasoning. Our work also highlights the importance of providing K-12 teachers with more opportunities to engage in professional development related to integrated STEM education. Implications for this work include those for K-12 teachers, teacher educators, classroom coaches, and administrators.
Dare, E., & Ellis, J., & Rouleau, M., & Roehrig, G., & Ring-Whalen, E. (2022, August), Current Practices in K-12 Integrated STEM Education: A Comparison Across Science Content Areas and Grade-Levels (Fundamental) Paper presented at 2022 ASEE Annual Conference & Exposition, Minneapolis, MN. 10.18260/1-2--40701
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2022 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015