askedparticipants to describe ways to improve entrepreneurship education programs, with specificattention to women faculty experiences.Table 1. Description of Participants Participant Race and Gender Discipline STEM Entrepreneurship Positionality Education Programming Participation Status (Yes/No) Dr. J Black woman (she/her) Engineering No Dr. Sh Black woman Engineering No (she/they) Dr. C Black woman (she/her) Engineering No Dr. W Black woman (she/her) Engineering Yes Dr. S Black
, the course, or the specific faculty member. This study aimed tounderstand the needs of engineering faculty members, especially those who had not workeddirectly with the engineering librarian for library resource instruction. The study was modeledafter a similar multi-site study conceived and organized by Ithaka S+R, a not-for-profitorganization that provides guidance and support for academic and cultural communities, thatexplored the teaching needs of business faculty members [3]. Interviews were conducted withfaculty members from the departments of Mechanical & Aerospace Engineering and Industrial &Systems Engineering in the summer of 2020. This paper examines the main teaching themes thatemanated from the analysis of the interview
dynamics in requirementsengineering will be underexplored, yet important for the practical use of this body of knowledge.This paper will support future work on the impact of requirements engineering education at theundergraduate level, as well as informing frameworks for understanding professionalrequirements engineering work.References[1] C. L. Dym, A. M. Agogino, O. Eris, D. D. Frey, and L. J. Leifer, “Engineering design thinking, teaching, and learning,” J. Eng. Educ., vol. 34, no. 1, pp. 65–65, 2006.[2] D. P. Crismond and R. S. Adams, “The informed design teaching and learning matrix,” J. Eng. Educ., vol. 101, no. 4, pp. 738–797, Oct. 2012.[3] C. J. Atman et al., “Engineering Design Processes: A Comparison of Students and
Adaptive Expertise. Educational Research and Reviews, Vol. 12, pp.14–29.Bransford, J. and B. Stein (1984). The IDEAL Problem Solver. New York: W. H. Freeman.Bransford, J., A. Brown & R. Cocking, Eds. (1999). How People Learn: Brain, Mind, Experience, and School.National Academy Press: Washington, DC.Bransford, J., Stevens, R., Schwartz, D., Meltzoff, A., Pea, R., Roschelle, J., Vye, N., Kuhl, P., Bell, P., Barron, B.,Reeves, B., & Sabelli, N. (2006). Learning Theories and Education: Toward a Decade of Synergy, in P. A.Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology, pp. 209–244. Lawrence Erlbaum AssociatesPublishers.Brophy, S., Hodge, L., & Bransford, J. (2004). Work in Progress - Adaptive Expertise: Beyond Apply
stereotypes regarding AfricanAmericans academic capabilities, their numerical majority status within the HBCU context actsas a buffer enabling them to perceive their racial and professional identity as compatible andintegrated. On the contrary, the numerical minority status of African American engineeringstudents in PWI exacerbates their vulnerability to feel threatened by the negative stereotypesabout their group. Even as they struggle to maintain a positive ethnic identity, they question thecompatibility between their ethnic and professional identities. As Du Bois states, it is the tensionthat impedes “fluid participation in Black world(s) and white world(s)”. It is for this reason thatAfrican American engineering students in PWIs may struggle more
2007 ASEE Summer School, Pullman, WA. 2. E. Seymor and N. Hewitt, Talking about Leaving: Why Undergraduates Leave the Sciences, Westview Press, Boulder, CO, 1997. 3. K. Solen and J. Harb, “An Introductory ChE Course for First-Year Students”, Chem Eng. Ed., 32 (1), 52 (1998). 4. D. Visco and P. Arce, “A Freshman Course in Chemical Engineering: Merging First-Year Experiences with Discipline-Specific Needs” Proceedings of the American Society for Engineering Education, 2006. 5. S. G. Sauer, “Freshman Design in Chemical Engineering at Rose-Hulman Institute of Technology” Chem. Eng. Ed., 38 (3), 222 (2004) 6. C. Coronella, “Project-Based Learning in a First-year Chemical Engineering Course: Evaporative Cooling”, Proceedings of the
and experiments in fluidmechanics, they generally do not possess the capabilities to perform hydrodynamic testing. Thispaper will present the work by the authors to develop a water flume that would allowhydrodynamic testing at velocities up to 2.0 m/s. The flume was constructed by anundergraduate and at a cost lower than commonly available commercial units. Both thefabrication process and the potential experiments that the flume could house are designed toimprove student learning in the area of fluid mechanics. The design is developed to be relativelycompact, with a 7’x3.5’ footprint and utilizes a commonly available single-stage centrifugalpump. Flow velocities in the test section can be varied passively by changing the insertcontaining the
, skills, and ability to solve complexproblems and to produce excellent solution(s) within the structure of the team. This concept wasfurther developed to include defining team and task, team climate, communication, and reflection(for a detailed description, please see Table 1)23-26.Design competence focused on finding and evaluating variants and recognizing and solvingcomplex design problems. These were further defined as having the ability to discover and designmultiple solutions to a given problem and to effectively evaluate those solutions to determine thebest solution, and having the ability to see the overall picture of a complex design problem, thenbreaking it into smaller, more manageable parts to solve while keeping the overall problem
wish to thank T.J. Nguyen for his work on the CyberAmbassadors project. We alsoappreciate the support and engagement of the many organizations partnering with theCyberAmbassadors project, including Tau Beta Pi, ACI-REF, CaRRC, the Carpentries, NRMNand CIMER. This material is based upon work supported by the National Science Foundationunder Grant No. 1730137. Any opinions, findings, and conclusions or recommendationsexpressed in this material are those of the author(s) and do not necessarily reflect the views ofthe National Science Foundation.References[1] H. Neeman et al., “The Advanced Cyberinfrastructure Research and Education Facilitators Virtual Residency: Toward a National Cyberinfrastructure Workforce,” in Proceedings of the
]. New SCCT models were developed to explain vocational satisfaction and well-being [10,11], and career management [9]. At the core of the original SCCT model, and most of the SCCTmodels that followed, are self-efficacy (i.e., confidence in the ability to successfully perform adomain-specific task, like a specific engineering skill), outcome expectations (i.e., anticipatedoutcomes of a particular behavior), interests (i.e., patterns of likes/dislikes for career activities),and goals (i.e., determination for a particular outcome). Taking this one step further, Lent etal.’s [9] integrative social cognitive model of academic adjustment, derived from both SCCT [1,2] and the social cognitive model of academic satisfaction [10, 11], explains how
appropriate realistic constraints, including consideration of health, safety, etc., to the engineering problem for the capstone design. Measure: Evaluated in final CPEN 3850 report • Competency: Students demonstrate ability to generate effective solution(s) to the capstone design problem formulated in CPEN 3850, including identified constraints. Measure: Evaluated in final CPEN 4850 report [1]Thus, in order to determine whether students can both identify and apply appropriate standardsand constraints, and apply these in an engineering design, it was decided that it was necessary toevaluate students continuously working on a project; therefore, measuring in sequentialsemesters was specified. Other required
Career Guidance Short- & Long-Term Goals Parent & Family STUDENT-SPECIFIC BELIEFS Encouragement of activities Activity Choice & Expectations for Student s Opportunities to learn various Engagement Achievement skills Performance Specific Socialization Goals Reinforcement Patterns Perceptions of: Other Communications of Beliefs -- Student s Abilities -- Value of Various Skills -- Student s interest
), white board(s),projector(s), and printer(s). The author was the professor of record and independently designedthe course based on Purdue University CLOOs. In course planning and preparation, theinstructor adopted a learning-centered paradigm, while using a Learning Management System(LMS) (i.e., Blackboard) for course organization, file sharing, assignment posting/submission,grading, and testing. The instructor’s goal was to create a learning environment in which studentscould learn to restructure the new information and their prior knowledge into new knowledgeabout the content, and practice using it. Course design included a combination of mini/bridginglectures (as needed), readings, group discussions, exams, assignments, and a team project
Group 2 identified by applying the separation criteria RV249 and RV242). Note that while eachof these separation criteria identifies distinct groups, the group characteristics are very different. (a) (b) (c) Figure 3: For course 1’s top two separation criteria (RV249 and RV242 shown in (a) and (c), respectively), the response pattern statistics for the applied science course result in distinct response groups (labeled Group 1 and Group 2, matching the labels from Figure 2). The dimensions that are unaffected by the criteria (i.e., personal interest and university application for RV249; fit with lifestyle for RV242) remain consistent (within
and Their Pedagogical AssessmentAbstractImparting real world experiences in the classroom for a software verification and validation(S/W V&V) course is typically a challenge due to lack of effective Active Learning Tools(ALTs). At Robert Morris University (RMU, the author’s institution), this educational resourcegap has been addressed by developing several ALTs in the form of class exercises, case studies,and case study videos that were created by collaborating with the academia and industrialprofessionals. Through this three-year work 20 delivery hours of case studies, 18 delivery hoursof exercises and 6 delivery hours of role play videos totaling 44 delivery hours of Software V&Vcourse materials have been developed. The developed
engineering. 10References[1] E. Godfrey and L. Parker, “Mapping the Cultural Landscape in Engineering Education,” J. Eng. Educ., vol. 99, pp. 5–22, 2010.[2] T. McCarty and T. S. Lee, “Critical culturally sustaining/revitalizing pedagogy and Indigenous educational sovereignty,” Harvard Educ. Rev., vol. 84, no. 1, pp. 101–124, 2014.[3] H. S. Alim, “Critical Hip-Hop Language Pedagogies: Combat, Consciousness, and the Cultural Politics of Communication,” J. Lang. Identity Educ., vol. 6, no. 2, pp. 161–176, 2007.[4] J. Irizarry, The Latinization of U.S. Schools: Successful Teaching and Learning in Shifting Cultural Contexts. Routledge, 2015.[5] V. Kinloch, Harlem on Our Minds
for all.References[1] S. Reges. “Why Women Don’t Code,” Quillette, June 19, 2018 [Online]https://quillette.com/2018/06/19/why-women-dont-code/ [Accessed January 14, 2019].[2] B. Oakley. “Why do Women Shun STEM? It’s Complicated,” Wall Street Journal, July 13,2018 [Online] https://www.wsj.com/articles/why-do-women-shun-stem-its-complicated-1531521789 [Accessed January 14, 2019].[3] J. Steinke. "Adolescent girls’ STEM identity formation and media images of STEMprofessionals: Considering the influence of contextual cues." Frontiers in Psychology 8 (2017):716.[4] K. H. Collins. "Confronting Color-Blind STEM Talent Development: Toward a ContextualModel for Black Student STEM Identity." Journal of Advanced Academics 29.2 (2018): 143-168.[5] S. L
students’ creativity ingenerating ideas within the context of design problems, an assessment more directlyfocused on the idea generation phase of the design process would be more suitable forour research. We plan to use a set of idea generation problems which have been usedsuccessfully in the past to measure outcomes related to creativity in idea generation.In future work, student ideation artifacts and projects will also be examined through thelens of the MPCA(18). Even though the metric requires raters and does not exhibit highreliability, the fact that the metric is broken down by function may allow us to better tracethe source(s) of a high or low creativity score than could be determined from a single,simple rating.A variety of research tools
University, San Luis Obispo. He spent the last two years working for an AmeriCorps national service program, CSU STEM VISTA. Here, he implemented programming for an NSF S-STEM grant for an academic learning community of underrep- resented students in mechanical engineering and conducted outreach to K-5 students. Currently, he is one of two CSU STEM VISTA Leaders implementing hands-on learning experiences in STEM throughout the CSU system and supporting a cohort of 15 VISTAs across 11 CSU campuses. c American Society for Engineering Education, 2016 PEEPS: Cultivating a cohort of supportive engineering students and building a support team for institutional changeAbstractA National
opportunities for undergraduate laboratory instructionAbstract:This paper outlines a two-semester senior engineering design project that was carried out tostudy a moderately well-defined chemical reaction involving sodium borohydride in aqueousconditions to generate hydrogen for fuel cell applications. Sodium borohydride hydrolysis hasbeen studied extensively since the early 1940’s as a promising hydrogen storage material, whichprovides a content-rich study area for engineering design coursework and undergraduatelaboratory experiences related to energy, hydrogen, and energy storage potential. Throughout thetwo-semester project design course, a two-student engineering team carried out literature reviewsand bench work that lead them to investigate
not exhaustive; rather, itshows a sample of Civil Engineering programs that have published journal or conference papersabout their industry-sponsored capstone courses. Page 26.1412.3Table 1: Reviewed Industry-Sponsored Capstone Design Courses Including Civil StudentsSchool (source) Semesters Annual Engineering Student Sponsor Support Enrollment Discipline(s) Group SizeBrigham Young 2 NR Civil 3-4 Project Idea,University 13 Mentoring, and
globally focused experiences outscored those who did not.Notably, the mean EGPI score of students who reported study abroad was significantly higherthan that of those who did not study abroad. In contrast, participation in second-languagecourses, projects or internships abroad, or having an international roommate did not reveal astatistically significant difference in students’ EGPI or GPI performance.Stepwise regression analysis was used to determine potential relationships among studentexperiences and their global preparedness. The regression results indicated that the combinationof such experiences including engineering focused service learning, study abroad, and non-engineering course(s) with a global focus accounted for approximately 12% of
-depletion is far more than privileges need to be defined over time and space, not traditional systems. just by the user.Figure 3. Traditional vs. IWMDs security (comparison for teaching and research integration).Identifying the modularity of different cryptographic algorithms: These include algorithmssuch as SHA3 and the Advanced Encryption Standard (AES). The sub-step includes applyingfault diagnosis and tolerance techniques specified for IWMDs.Fig. 4 shows the first part of an S-box structure for the Pomaranch cipher. The structure ofPomaranch is based on linear feedback shift registers (LFSRs) which allow fast implementationand produce sequences with large period if the feedback polynomial is chosen
their thinking. As students review each other‟s screencasts, their own thinking and metacognition will be re-evaluated from another learner‟s perspective who is not necessarily a teacher or a textbookauthor. Learning from peers is more authentic and more sustainable than learning from atextbook or from a teacher17. In addition, receiving peers‟ comments on their own screencastadds to these metacognitive items that will eventually help improve their CAD knowledge andskills. In this National Science Foundation (NSF) project, two mechanical engineering faculty andtwo learning scientists have collaborated to implement a student-centered instructional strategy,namely peer-generated screencast strategy in teaching CAD in the undergraduate
teacher professionaldevelopment experience may trickle down to impact student self-efficacy and interest.Fortunately, our research is ongoing with the results of these implementation changes remainingto be seen.AcknowledgmentThis material was supported by the National Science Foundation under Grant DRL-1513175.References[1] National Science Board, "Science and engineering indicators digest 2012," Author, Arlington, VA,2012.[2] K. D. Welde, S. Laursen, and H. Thiry, "Women in science, technology, engineering and math (STEM)," Sociologists for Women in Society, University of Kansas, Lawrence, KS,2007.[3] P. M. Sadler, G. Sonnert, Z. Hazari, and R. Tai, "Stability and volatility of STEM career interest in high school
throughout the search process. In addition, she runs a faculty develop- ment and leadership program to recruit and support diverse PhD students who wish to pursue academic positions in engineering or applied science after graduation. Dr. Sandekian earned B.S. and M.S. degrees in Aerospace Engineering Sciences at CU Boulder in 1992 and 1994, respectively. She went on to earn a Specialist in Education (Ed. S.) degree in Educational Leadership and Policy Studies in 2011 and a Ph.D. in Higher Education and Student Affairs Leadership in December 2017, both from the University of Northern Colorado. She is a Founding Leader of the American Society of Engineering Education (ASEE) Virtual Community of Practice (VCP) for LGBTQ
understanding of our overall data, we performed descriptivestatistical analysis. Shown below in Table 4 are the descriptive statistics for average noveltyscores by brainstorming group. Here, N represents the number of ideas generated in a givenbrainstorming session and mean represents the total novelty score of each design divided by thetotal number of designs generated. The groups are denoted by the gender composition andstructure (i.e., PM-S = Predominantly Male-Structured) We also present skewness and kurtosisto demonstrate the suitability of the dataset for subsequent statistical analysis. Based on thevalues shown in Table 4, we used standard statistical tests without violating assumptions ofnormality.Table 4: Overview of descriptive statistics for
andlearning new methodologies, such as Q methodology, engineering education researchers will beable to answer new questions, elicit new insights, and expand their skillsets.References[1] J. W. Creswell, Research design: Qualitative, quantitative and mixed methods approaches, 4th ed. Thousand Oaks, CA: SAGE Publications, Inc., 2014.[2] S. R. Brown, “A primer on Q methodology,” Operant Subj., vol. 16, no. 3/4, pp. 91–138, 1993.[3] W. Stephenson, The study of behavior: Q-technique and its methodology. Chicago, IL: University of Chicago Press, 1953.[4] I. Newman and S. Ramlo, “Using Q methodology and Q factor analysis in mixed methods research,” in SAGE Handbook of Mixed Methods in Social & Behavioral Research, 2nd
, nearly half (45%) of all high school seniors indicated an intent to study scienceand engineering (S&E), yet in the 2015 survey of full-time undergraduates, just more than onethird (37%) of undergraduate enrollments were in S&E programs, indicating there exists adisconnect between enrollment and graduation rates. In 2015, out of nearly two-millionbachelor’s degrees earned; less than one-hundred thousand were in engineering (5.2%)(NSB Appendix Table 2-21 [2]). “We are graduating fewer engineers now than 20 years ago,both in terms of absolute numbers and as a percentage of all college degrees” [3]. This is alsoreflected in the National Science Board (NSB) cohort study which identified that more than onein six (16.3%) of students who
needsstatements. The detailed descriptions of student conceptions and challenges described in thispaper can help support the shaping of this pedagogy.AcknowledgementsThis material is based upon work supported by the National Science Foundation under Grant No.1611687. Any opinions, findings, and conclusions or recommendations expressed in this materialare those of the author(s) and do not necessarily reflect the views of the National ScienceFoundation. The research team would also like to express their gratitude to Charlie Michaels,Tallie Ritter, Jessica Kahn, Tanner Jones, and Christian Casanova at the University ofMichigan’s Center for Socially Engaged Design for sharing and allowing us to use the needsstatement Why-How Laddering example shown in