analysispresented here is part of a larger study of the “impact trajectories” (contributions, influences,challenges, successes) of pioneers in the field of engineering education. For the purposes of thisproject, “engineering education pioneers” are defined as those who (1) are/were active (throughresearch, practice, and/or service) in the area of engineering education; and (2) are recognized bymembers of the engineering education community as significant contributors to or shapers of thefield of engineering education.In this paper, we seek to explore in greater depth the nature of engineering education pioneers’perceived contributions and impacts in engineering education, and what these contributions andimpacts mean for the engineering education community
avoidenvironmental restrictions and tax obligations. Specifically, this paper examines the CostaConcordia incident as an illustration for the information to follow: questionable registrationpractices; pollution issues; and integration in technical classes, specifically, the field ofenvironmental engineering.BackgroundInterest in the environmental effects of the cruise ship industry is relatively a recent, dating backabout 20 years, which corresponds to the physical growth of the ships and the explosion ofconsumers in search of exotic vacations. Between 1980 and 2013, the number of passengersincreased from 1.4 million to 21.5 million,1, 2 with an estimated 24 million to sail in 2016.1Consequently, the size of ships has increased to accommodate higher
. Data collection has been underway since the end of year one,once IRB approval had been attained. For details from the group doing the research for thisproject, refer to another paper at this conference[1].What the goals and strategies mentioned above mean changes from year to year. Some ideaswork well, and others do not. In year 1, it became clear that it was necessary to identify at leastone key person at each institution and to find ways to facilitate the development of a solid,effective working partnership between the various schools in each node. Students at some CCsgot excellent advice preparing them to transfer, most did not. Some faculty at 4-year schoolsknew someone at a nearby CC, and something about the CC student experience, most
teach sustainability in engineering through a bell hooks lensIntroductionA review of the characteristics of classroom dynamics is presented in contrast to a specificcourse designed to act as an introduction to sustainability for multidisciplinary engineeringdesign students.Correlating pedagogy to presenceInterdisciplinary collaboration and innovative teaching methodologies can effectively bridgetheoretical sustainability concepts with practical engineering applications, ultimately preparingfuture engineers to address complex global environmental challenges and design moresustainable technological solutions [1]. Reviews of this topic highlight that to effectivelytransform engineering education, institutions must develop adaptive
— supported graduate engineering and computerscience students through financial assistance, mentorship, and professional development. A keyproject goal was to establish a graduate student association to sustain the student communitypost-funding. As of Fall 2022, retention for Cohort 3 (Fall 2021 entrants) reached 83%.Graduation rates by the fourth year were 100% for Cohort 1 (Fall 2019 entrants) and 86% forCohort 2 (Fall 2020 entrants). These outcomes are comparable to the institutionally reported fall-to-fall retention rate of 86% for master’s students, excluding those who had already completedthe program. Despite recruitment challenges, pandemic impacts, and post-grant sustainabilityconcerns, the project successfully cultivated a supportive
Circuit Tutor system hasnow been used by over 2300 students in 54 class sections at eight different colleges anduniversities, with generally very favorable ratings.1. IntroductionLinear circuit analysis is a foundational topic for electrical engineering students and frequentlycomprises the exposure to electrical topics for non-electrical engineers. Optimizing studentsuccess in this course is therefore of critical importance. The development of a computer-basedtutoring system based on the idea of step-based tutoring has therefore been undertaken, whereeach individual step in a student’s work on a problem is accepted and evaluated for correctnessbefore they proceed to the next step of the solution. Such a system requires the creation ofspecial
starting fall 2015.Inworks Space We considered it critical to the success of the Inworks that it be housed in space thatsupports communication, collaboration, and experimentation. This is because that physical spacerepresents one of the tools used to bring people from different backgrounds together. Our spacehad to be warm, inviting, and supportive. People should want to spend time there, and it shouldbe possible to spend large amounts of time there comfortably. There needed to be a place toprepare a light meal, and to relax. Our space did not have to be modern or upscale. Power andconnectivity are essential; carpet and acoustic ceiling tile are not. Figure 1 shows a view of theInworks workshop area.Figure 1: The Inworks Workshop
the knowledge about the field of engineering and simultaneously provide development ofinvaluable professional skill sets to the engineering student. In this first year of study we look atthe design parameters of the project where students from various STEAM based fields must designa living, talking, interactive pumpkin patch as part of a community exhibit.MATERIALS AND METHODS The project itself was a community based learning experience in which students from variousmajors collaborated to design an interactive pumpkin patch. The student group this first year wascomposed of 44 students of which 13 were science majors, 12 were engineering majors, 10 wereliberal arts majors, 4 were business majors, 4 were nursing majors, and 1 was an education
designsoftware that seamlessly transitioned between them as well.Background and IntroductionFor the last twenty-one years in each spring term, The Ohio State University FEH Program hasincorporated an autonomous robot design project in which college freshman honors engineeringstudents design, build, and program autonomous vehicles to perform certain well-defined taskswithin a two-minute time limit1. The tasks the robots must complete revolve around a centraltheme developed each year by the teaching assistants and faculty of the Honors engineeringclasses. The theme for spring 2015 was “Arctic Storm”, and the robot competition course isshown as a CAD model in Figure 1. Figure 1. Diagram of 2015 Robot Competition CourseThe project uses
National Science Foundation (NSF) funded grants: Designing Teaching: Scaling up the SIMPLE Design Framework for Interactive Teaching Development and a research initiation grant: Student-directed differ- entiated learning in college-level engineering education. Her research centers on facilitating and studying her role in faculty development self-study collaboratives. c American Society for Engineering Education, 2016 SIMPLE Design Framework for Teaching Development Across STEMIntroductionExtensive research has shown the benefits of interactive teaching for student learning andretention 1. However, significant barriers exist to broadening the use of interactivetechniques in college classrooms, particularly
, general, or mechanicalengineering 1.As mentioned in the abstract, this paper is organized as if it were a patent, containing claimsand subclaims. As the paper will describe “patenting” an engineering librarian at anAmerican university, the patent will follow the patents issued by the United States Patent andTrademark Office (USPTO). The three types of patents issued by the USPTO are utility,design, and plant. The patent described for this paper is similar to a design patent, as anengineering librarian is not a new job title. More specifically, the paper is organized intoclaims that are essential components of patents issued by the United States. According to theUSPTO, “The claim or claims shall define the matter for which protection is sought
rating of five implied significantproficiency or expert knowledge of the application. The collective results from theclasses are summarized in Table 1:Table 1: Student Self-Assessment With Regard to Software Proficiency Average Standard Average Standard (2014) Deviation (2015) Deviation Word 4.32 0.53 4.39 0.64 Excel 2.90 1.02 2.98 1.03 Powerpoint 4.03 0.77 3.92 1.06These results indicate that the assumed level of proficiency of these three applicationsvary. The average
mathematicsco-requisite course to college algebra, in order to reach more students. We have alsoimplemented a mandatory peer mentor led workshop for all students. Peer mentors provide thestudents with an upper classman peer who can provide support inside and outside of theclassroom. In our paper we will continue to discuss specifics regarding the ENGR 100 course,peer mentoring, intervention strategies, and FYE components.Literature ReviewAccording to Kuh (2008)1 freshman year experience programs are highly influential inimproving student success and create positive impact on their pathway to a degree. Keycomponents of successful FYE programs are utilizing learning communities. In addition Kuh(2008) recommends writing intensive curriculums that focus on
Page 26.753.1 c American Society for Engineering Education, 2015International DivisionThree choices of session topics: 1. Global Research Opportunities in Engineering and Engineering-related fields 2. International Research Compliance- Guidelines and Rules of the Game 3. International Collaborations, Experiences, Partnerships, Service Learning Facilitating successful global research among Engineering and Technology scholars: The case study of agricultural supply chain Page 26.753.2 Facilitating successful global research among Engineering and Technology scholars: The case study
Engineering Technology Accreditation Commission (ETAC). Each commission accreditsprograms in its discipline. Despite harmonization efforts over the last few years, differences inseveral of the criteria do exist. This paper will provide explanations and cite criteria used in theETAC commission.There are a lot of terms and supporting documents used by ABET that need to be defined. Someof the more important ones are listed below. 1) Team Chair (TC). The Team Chair represents ABET and is the central point of contact once a program’s request for evaluation has been accepted. The Team Chair is a highly experienced Program Evaluator who helps the Program Evaluators and program being evaluated. 2) Program Evaluator (PEV). The Program
application of the skills they need to becompetitive in the global marketplace. Page 26.168.2The National Science Foundation Advanced Technological Education (NSF ATE) programfunding for the project that initiated this work ended in August of 2011, and follow-through byCIS faculty in continuing the problem-based learning methodology has been inconsistent.IntroductionTwo metro-Denver community colleges participated in the Colorado ATE Partnership (CATEP)in order to advance technician education in the region. This NSF/ATE-funded project (DUE#0802439)1 had a shared vision to develop a model for Information and CommunicationsTechnology (ICT) responsive to
ethnic group, were the most certain of choosing engineering or CS as a major (79% were very certain or certain). Males were also more likely (p=.153) to transfer to ASU than females.The students were asked to rank several areas for which they wanted more information. Theareas in order of rank were: 1. Financing a Bachelor’s degree 2. Learn more about engineering 3. Where engineering jobs are located 4. Know more about the engineering majorsIn Fall 2012, we designed a survey for CC students to answer the question: “What about Page 26.550.4engineering attracts or does not attract you
the gender diversity of AfricanAmerican engineering BS degrees is shown in Figure 1, which also shows the initialdecline and slight recovery in gender diversity for all engineering BS degrees across thepast nine years. The female fraction of engineering BS degrees had reached its highestlevel in 2002 at 20.9%.6 Page 26.618.3 Figure 1 Female fraction of African American and all US BS engineering degrees.2African American male recipients of engineering BS degrees grew from 2398 in 2005 to2742 in 2013, an increase of approximately 14%.4 In contrast, the number of femaleAfrican American recipients of engineering BS degrees declined 23%, from 1144 in
contextualizationThe four courses were contextualized in a hypothetical remodeling project of a small, singlefamily residence. This scenario was chosen because it is familiar to students, it is a realisticapplication of class principles, and it lends itself well to integrating material from differentcourses. An overview of the house is shown in Figure 1. Students analyzed two houseremodeling improvements in this project: installation of an air conditioning (AC) unit on theroof, and removal of an exterior wall to open up access to the yard. These two tasks are shown inFigure 2. In what follows, a chronological account is given of the exercises in the class related tothe project.Figure 1: Single family residence used in the remodeling project. Architectural
board and controlling the frequency of a piezoelectric speaker. This previousresearch was presented in several papers 1. The idea has shown great promise in terms ofengaging students in learning programming.Recently, the technology began to offer the new tablet devices that incorporate the capability ofreading eBooks and run different application ranging from games to sophisticated scientificapplications. The major limitation for these devices to spread out quickly in the markets was tillnow the price. Prices have dropped rapidly due to several factors like the mass production,competition, cloning and fast pace of advances in the hardware and manufacturing technology.These devices are now in the hands of almost all college students and very
Program (www.stevens.edu/nano) at Stevens. He has been awarded the NSF CAREER award, the ASEE Mechanics Division Ferdinand P. Beer and E. Russell Johnson Jr. Outstanding New Educator Award, and the 2009 Outstanding Teacher Award from the Stevens Alumni Association. Page 26.1213.1 c American Society for Engineering Education, 2015 Outcomes of a Systems Engineering Project for K-12 TeachersIntroductionPresident Obama’s Educate to Innovate initiative set a goal of preparing 100,000 new andeffective STEM teachers over the next decade.(1) Concurrently, the publication of the NextGeneration
with guidelines concerning theexpectations of their final presentation. Although the national Future City competition includesthe production of a physical model of the city, there was not adequate time to design, simulate,and construct a physical model in our competition so we instead relied on SimCity™ screenshotsand a narrative in a final written report.The design competition culminated with a presentation by each team in the Pecha Kucha style Page 26.1274.5(Figure 1). Presentations were exactly six slides presented in a 3-minute period (30 seconds perslide). Since teams were large, only a subset of team members presented. Teams were givenonly
) for the 25th to the 75th percentile istypically 1850 to 2100. The breakdown by area of the exam per year is shown as Figure 1.Typically, 95% of the students enrolling ranked in the top 25% of their high schools with the lowof 91% occurring in 2009 and the high of 97% occurring in 2011. Nearly all of the studentsenrolled within the program are considered “traditional,” indicating that they are full-timestudents that enrolled in college immediately after graduating high school2. Page 26.1315.2 750 730 710 690 670 SAT Score
sanitation crisisAbstract:According to the WHO, 2.5 billion people lack access to proper sanitation resources.1 Integral tothis alarming statistic is the absence of sanitation technology. Current engineering initiativeshave responded to this challenge with toilet fairs and competitions showcasing cutting-edgetechnologies in the sanitation sector. That is, engineers have often approached this sanitationcrisis as well as other world problems from a technocentric perspective―the philosophy thatconsiders technology as capable of solving human problems.2 Technocentrism speaks to thecurrent outlook of engineering education. We as engineering students are trained to design andbuild technical solutions for world problems. Furthermore, this focus within
environmental engineering and conducted an independent study on anaerobic digestion. c American Society for Engineering Education, 2016 The Nexus of Science and Engineering: Structuring Individual Studies to Inform Senior Design Projects(1) Introduction Engineering can be described as the application of science to identify and solve problems.1An engineering student spends years learning about how the universe works then builds uponthis knowledge constructing a mental framework of engineering principles. Ideally, uponcompletion of an accredited engineering program, the student’s mental framework will be robustand flexible enough to process and respond to any problem within their specialized
peers andgained the knowledge and skills to be applied in future Challenge-It sessions. Learning Blockswere broken down into sections with specific expectations as shown in Figure 1.Figure 1: Learning blocks used to guide camp activitiesThe learning blocks were divided into different categories, subjects and sections. Learn-Itsections were 10-minutes in duration and consisted of brief explanations of the theory,introduction and purpose of the activity, and expectations with facilitators providing fun andengaging presentations using videos and live examples. The emphasis here was to provide asummary of the key terms, topics and strategies without elaborating in regards to specificsolutions or challenges. This gave campers a basis for
practice.Data-driven instruction has continued to attract interest for its promise to help addressinstitutional objectives as well as increase the quality and standardization of instruction at thecourse level [1, 2].Instructors, informed by student data, can gain an insight into student learning environments andprogress and then reshape course design and lesson planning [3]. To facilitate data-driveninstruction, numerous learning analytics tools have been developed to collect, analyze, andvisualize student data. The tools can be as simple as spreadsheets and be easily applied to showstudent performance data in charts [1]. Such simple data collection and visualization can helpinstructors with data-informed decision making to adjust their lesson plans
Paper ID #45882GPS Spoofing on UAV Simulation using ArdupilotDavid Li, University of Maryland College ParkProf. Houbing Herbert Song, University of Maryland Baltimore County Houbing Herbert Song (M’12–SM’14-F’23) received the Ph.D. degree in electrical engineering from the University of Virginia, Charlottesville, VA, in August 2012. He is currently a Professor, the Founding Director of the NSF Center for Aviation Big Data Analytics (Planning), the Associate Director for Leadership of the DOT Transportation Cybersecurity Center for Advanced Research and Education (Tier 1 Center), and the Director of the Security and
programs [1]. Although many US universities have resumed in-personstudy abroad opportunities post-pandemic, there still exists a benefit to continuing virtual exchangeprograms.Virtual exchange programs can offer an alternative for many students to broaden their access tointercultural learning. It allows students to engage with peers around the globe without having toleave their home institutions and can provide access to a more diverse range of students [2]. Tohelp understand the impact of virtual exchange on students, assessment tools will help to measurethe development of intercultural skills and global awareness.Additionally, this paper introduces the Virtual Exchange and Study Abroad (VESA) kit, a portableresource designed to help faculty
understanding of threshold concepts in structural engineering is essential for improvingstudents' learning experiences and ensuring their professional success. These concepts aredefined as transformative, integrative, and often troublesome for learners, as they representpivotal ideas that fundamentally change the way students understand a subject once mastered[1]. They lead to a significant shift in comprehension and allow students to integrate separateideas into a unified framework. However, because these concepts are inherently complex, theyoften present significant barriers to learning [2].Structural engineering, a specialized branch of civil engineering, requires a deep understandingof theoretical knowledge combined with practical application. This