field. Like in manyengineering courses there are laboratory experiments and design assignments. Some innovative compo-nents of this effort are the collaborative approach to teaching (engineer + architect), the use of televisedlaboratory experiments (as opposed to live demonstration labs) and the use of information technologies forfaculty-student interaction (fax, voice mail and electronic mail). The course is broadcast twice a week(three hours each time) for 12 weeks. Students in the region may watch the lectures at the broadcast time orthey may record them for future viewing. Students living outside the broadcast area subscribe to a systemthat delivers the videotapes by regular mail every week. The course has been offered for three terms and
students with GPA of 3.83.Admission RequirementsAdmission at UF is based on the student’s high school GPA, Scholastic Aptitude Test 1 (SAT1) and the American Collegiate Test (ACT). International students are required to have a highschool degree in an English speaking country or provide TOEFL results4.The minimum requirements for qualification into the program are5: 1. Graduation from a regionally accredited or state-approved secondary school or the equivalent General Education Degree (G.E.D.). 2. Fifteen academic units, including 4 years of English, 3 years of math, 3 years of natural sciences (two with laboratories), 3 years of social sciences, and 2 sequential years of a foreign language. 3. A cumulative C average in the
. Whendeveloping courses and course sequences in energy systems in engineering technology programs,the applied nature of the programs make it especially important that the students be educated inboth traditional and emerging technologies, and that the technologies be viewed from as realistica viewpoint as possible. This requires that the students develop a systems point of view, inwhich the potential effectiveness of the technology is quantified not in terms of peak efficiencymeasured in a laboratory, but rather how the technology penetrates and affects the global energyinfrastructure.At Arizona State University, an automotive option within Mechanical Engineering Technology isunder development, a particular focus of which will be highly efficient vehicles
2006-1162: NEW PATHWAYS TO EDUCATE FUTURE TRANSLATIONALRESEARCHERS IN MEDICINEAnn Saterbak, Rice University Ann Saterbak is Director of Laboratory Instruction and Lecturer in the Bioengineering Department at Rice University. She received her B.A. in Chemical Engineering and Biochemistry from Rice University in 1990 and her Ph.D. in Chemical Engineering from the University of Illinois in Urbana-Champaign in 1995. She conducted research and provided technical support within Shell Development Company from 1995 to 1999.Michele Follen, M.D. Anderson Cancer Center Dr. Michele Follen received her B.A. degree from the University of Michigan, Ann Arbor, in 1975, her M.D. degree from the
2006-814: VIRTUAL TOOLKIT FOR COMMUNICATION SYSTEMS AS A TOOLFOR INNOVATIONMurat Tanyel, Geneva College Murat Tanyel is a professor of engineering at Geneva College. He teaches upper level electrical engineering courses. Prior to Geneva College, Dr. Tanyel taught at Dordt College, Sioux Center, IA from Aug. 1995 to Aug. 2003. Prior to 1995, he was at Drexel University, Philadelphia, PA where he worked for the Enhanced Educational Experience for Engineering Students (E4) project, setting up and teaching laboratory and hands-on computer experiments for engineering freshmen and sophomores. For one semester, he was also a visiting professor at the United Arab Emirates University in Al-Ain, UAE
the theory,and assign paper based problem sets of theory and math, supplemented with limited Matlab andMultisim based labs. Software based simulation studies are a useful learning tool, however,computer simulations cannot model all aspects of the behavior of actual systems.Telecommunication Instructional Modelling System (TIMS) is an advanced system fortelecommunications training. TIMS is a rack and module system, in which modules perform abasic communication or signal processing function. For example, there are adders, multipliers,filters, samplers, and signal generators. TIMS provides students with a way of prototypingcommunication and signal processing systems in the laboratory that helps understanding.TIMS would provide a more "real world
their performance. The students were made aware ofthe fact that a material and the process for making it must be chosen in concert. This papersummarizes the overall experience of the mechanical engineering sophomore students onmaterial and process selection for a wide range of consumer products chosen by them.INTRODUCTIONProduct dissection (teardown) process has become a popular way to teach students aboutengineering concepts and design principles associated with engineered products around them.This process of reverse engineering helps the student design teams learn how the productfunctions and how the parts or subassemblies interact with one another. The reverse engineeringprojects have been incorporated as a laboratory component of a
Negative ()) of multimedia live instructor? Other (0) laboratory Do you think a virtual facility lab experience would be Better than (1) _________ that of a traditional lab experience? The same as (9) Worse than(2) Are you comfortable with learning technical information Strongly Affirmative (1) over the internet, for instance, using YouTube learn a skill or Affirmative (7) process? Neutral (2
returned to his boyhood home and is teaching as a full professor at Northern Michigan University. He is a member of HKN and IEEE, a Registered Professional Engineer in California, and is a past chair of the Energy Conversion and Conservation Division of ASEE. c American Society for Engineering Education, 2019 Teaching Power Transformer Testing to UndergraduatesAbstractMany educational electrical power laboratories do not have any access to utility-sized three-phase and single-phase power transformers, voltage regulators, and utility-grade instrumenttransformers. At Northern Michigan University, a local consortium (Lake Superior CommunityPartnership, The Upper Peninsula Power Company, American
materialssuch as filtration media, catalysts, adsorption media, and electrodes. In fact, the successfulcommercialization of solar cells, new lighting technologies, fuel cells, and batteries may dependon the ability scale-up laboratory prototypes to large-area products in high-yield, low-costmanufacturing processes. Tools based on imaging and two dimensional probing will be veryuseful for process control, quality assurance, and reliability studies. Multicrystalline solar cells are particularly interesting due to the intricate grain structures[2-6] which results from the details of the casting process used to solidify silicon ingots fromwhich the silicon wafers are cut. The silicon wafers are processed into solar cells using emitterjunction
design course. Thegoal is to ensure student learning outcomes consistent with the Accreditation Board ofEngineering Technology (ABET) criteria involving knowledge, skill, tools and techniquespractices in the subject area. Specific learning outcomes are: Understanding of fluid power theory, application, circuit, and function Ability to analyze behavior, simulate function of a fluid power system Understanding of engineering design process with system approach Ability to implement and test a laboratory prototype of a designed fluid power system Understanding of process sensor and data acquisition method in performance testingThe topics were divided into six modules, each running for a period of two weeks. Specific topicsto
student at their convenience (an element of the Flipped classroom) thus freeingup class time for various Active Learning experiences including conceptual questions, Think-Pair-Share activities, Ranking tasks, individual and team quizzes, and collaborative problem solving.Project Based Learning (PBL) was used through two large team-based design projects undertakenduring a weekly laboratory session. A mixed-methods assessment strategy was employed toevaluate the success of these approaches. Quantitative data was obtained from final examperformance for both conceptual understanding and problem solving competency which wascompared directly to the same class taught in a traditional manner. Other quantitative andqualitative data, including student’s
experimental results to analytical or simulatedpredictions, satisfying a major learning objective. The higher sampling rate of the MuddLog16had the effect of allowing students to be less-attentive to the potential of aliasing; future versionsof the course should examine means to ensure students acquire and understand aliased data.IntroductionExperimental Engineering at Harvey Mudd College is an intense multi-faceted sophomore-level,semester-long course. The stated learning objectives for the course are: 1. Demonstrate hardware and equipment skills: a. Demonstrate the safe and proper use of basic laboratory equipment: e.g., digital multimeter (DMM), signal generator, oscilloscope, breadboard, and analog transducers
experience in which teachers fullyparticipate in a computer science or engineering laboratory research and engage in an inquiryfocused content-to-pedagogy teacher professional development workshop, buildingcurriculum from their lab research experience with foci on scientific experimentation andimproving students’ science achievement and literacy. The programs are aligned withCommon Core Math Standards and Next Generation Science Standards and addresses theresearch question: • What is the impact of an intensive research-based teacher professional development program on teacher and student performance?Fifty-three teachers and their 7,420 students have participated in the ACCESS 4 Teachers RETand our previous Societally Relevant Engineering
Computer Engineering Department HeadsAssociation, Mousavinezhad et al. started a workshop series for developing educational andresearch programs in a critical area of power and energy systems with the support of the NationalScience Foundation 3. Many recent efforts have been devoted to improve the teaching throughsimulation 4-7; nevertheless, few have been devoted to enhance hands-on skills. Recently Farhadiand Mohammed designed a Laboratory-Scale Hybrid DC power System to address that issue8.However, it requires tremendous effort from the instructors and a great amount of sourcefunding, which is hard to duplicate in most of the schools. In addition, the DC power system issparsely used in power industry as the AC power system is still dominant due
asineffective in helping students develop critical thinking skills necessary to take up their roles asengineers in more professional settings [6]–[8]. In most cases the lecture classes are followed by a laboratory component. For thelaboratory sessions students are given a booklet consisting of specific circuit exercises related tothe lecture of each given week to be completed prior to the class. During the lab, they arerequired to construct the given circuit, measure required values and discuss the comparisonbetween calculated and measured values. Consequently, laboratory classes have been describedas the point at which theoretical learning about concepts meets practical application.Laboratories have also been classified as “superior to
. This course has been developed and is taught by faculty from bothdepartments. The course includes the use of discrete components and FieldProgrammable Gate Arrays (FPGA). A set of custom hardware components have beendeveloped that can be interfaced to an FPGA and a microcontroller. Instructional videoshelp students prepare for laboratory exercises and the course concludes with a finaldesign-build project.The overall goal of this project is to teach students how to work in multi-disciplinaryteams and to make it easier for students to switch between AS and AAS programs. ACapstone Design course is being developed where small teams comprised of PrecisionMachining, Engineering Science, and Computer Technology students will solve asemester long
power engineering education cannotbe the simple duplication of the previous curriculum. Most existing courses in power engineering,such as power system, power electronics, electric machines, etc, have not updated for a longwhile and are failing to deliver relevant information in light of current industrial practices. Inaddition, complementary courses including control theory, embedded system, communications,digital signal processing, etc, are needed to strengthen student knowledge and skills withcommunication and information technologies15. Graduate student research needs to be leveragedfor the undergraduate curriculum development and laboratory modernization to improve studenteducation in the area of smart grid. Through engaging students in
Virginia Tech B.S.E.E. program. She continues to be actively involved in the development of mobile hands-on pedagogy as well as research on other topics in STEM education, the synthesis and characterization of nanoscale optical materials, and fermentation processes.Dr. Bonnie H. Ferri, Georgia Institute of TechnologyDr. Deborah Joy Walter, Rose-Hulman Institute of Technology Dr. Deborah Walter is an Associate Professor of Electrical and Computer Engineering at Rose-Hulman Institute of Technology. She teaches courses in circuits, electromagnetics, and medical imaging. Before joining academia in 2006, she was at the Computed Tomography Laboratory at GE’s Global Research Center for 8 years. She worked on several technology
Professor in the School of Mechanical and Materials Engineering at Washington State University (WSU). He initiated the HYdrogen Properties for Energy Research (HY- PER) laboratory at WSU in 2010 with the mission to advance the Technology Readiness Level (TRL) of hydrogen systems. He received a B.S. degree in Mechanical Engineering from the University of Idaho in 2005 and a M.S. degree in 2007. His master’s thesis has been adopted as the foundation for hydrogen fuel- ing standards and custody exchange, in addition to winning the Western Association of Graduate Schools Distinguished Thesis Award for 2008. He completed his Ph.D. in the Cryogenic Engineering Laboratory at the University of Wisconsin-Madison in 2010 on the
Student - Developed test system, designed and fabricated custom components. • 32 Course Graduate Students - Gave feedback on the course content and delivery over 2 semesters.Course ObjectivesWe wanted to establish a course that starts by teaching the fundamentals of structural modeling,but leads the students quickly and directly to the laboratory. At the graduate level this validationstep is often excluded, so students end up with the skills to build complex models, but never to setup realistic experimental conditions and accurate data acquisition systems to test these models.Our goal was to provide the educational structure to teach the integration of the two disciplines,but to also take it a step further and have the exemplar
analytics (data-mining and reasoning) of practice-based andexperiential STEM. This data is used to create analytics support tools for teachers, learners andadministrators, providing frameworks for evidence-based curriculum design and learning systems.The PELARS project creates behavioral recording inputs, proving a new learning analytic that isscalable in application, and bridge qualitative and quantitative methods through reasoning andfeedback from input data. The project serves to better understand learners' knowledge in physicalactivities in laboratory and workshop environments, as well as informal learning scenarios.PELARS traces and helps assess learner progress through technology enhancement, in novel waysbuilding upon current research. The
EET programs across the country. The project also addressesthe need for CRTCs and provides curriculum and training opportunities for students from otherinstitutions, industry representatives, and displaced workers.The overall goal of the project is to help meet the nation’s forthcoming need for highly trainedIndustrial Robotics workers. Strategies include developing, testing, and disseminating anupdated, model curriculum, laboratory resources, and simulation software package suitable foruse in both 2- and 4-year EET programs. To complement this effort, outreach to K-12 studentsand teachers will work to enlarge the pipeline and diversity of students interested in careers inrobotics. Programs will also be offered to students at other
boxes, antennas and light and heavy fabricated structures, for communication, TV telecast, natural disasters management and Telemedicine application. Dr PS, designed and manufactured various types of antenna’s weighing from 200 pounds to 100,000 pounds. He was also actively involved in configuring the antenna controls and selection of motor and motor controllers. Dr PS, has advised more than 40 senior/capstone projects. One of his project won the national award from Airforce Research Laboratory in spring 2017. Project was on ”Design of the Load Carrying Vehicle (LCV)”- The project solution is a fully electric, autonomous, all terrain, load carrying vehicle. c American Society for
the course experience.In the Fall of 2017, planning began for a refresh of the course and laboratories. New laboratorystations were designed and built. Lecture and laboratory experiments were updated to use theAllen-Bradley PLCs. The stations were first used in January 2018.The new laboratory structure delayed the start of programming topics by a week. In the firstlectures and labs, students used a basic system wiring ladder diagram including safety circuitry.In lab they learned the fundamentals of electrical controls wiring and performed basic wiring forsensors and actuators. This was facilitated by a lab station design where the students began witha rolling cart that had a back panel with DIN rail mounted. (Note: DIN is the acronym for
sub-disciplines (Intradisciplinary) as well as with professionals from other fields(Interdisciplinary). One of the learning outcomes of the two-course capstone design sequence atWentworth Institute of Technology in Boston, Massachusetts is an intradisciplinary team designexperience.In the first course of the capstone design sequence (CIVE4000), teams of five students developand initiate the design of their original project with each project covering five different civilengineering sub-disciplines. Each student on the team is responsible for one of the technicalareas of their project. During the laboratory sessions, the students must work together with thedifferent civil engineering disciplines on their team as well as meeting with the
day-long program includes hands-on lab modules, college admissioninformation sessions, a talk highlighting STEM career opportunities, and a panel discussion withfemale undergraduate and graduate students. The lab modules teach concepts like DNA extraction,the unique properties of polymers, and process engineering to make cosmetics. An unique aspectof this program is parental involvement. While students engage in labs, their parents are given in-formation on college financial aid and admissions to help them support their daughters through theapplication process. A laboratory module for parents and their daughters allows them to conducthands-on experiments as a team. Our program empowers parents to envision their daughters asengineers. Based
, persuasivespeaking, and physics. Our unique program targets incoming high school freshmen from adiverse urban population. For several years the physics course was based on a traditionalintroductory college mechanics laboratory curriculum. This curriculum was not inquiry-basedand provided only limited opportunities for students to construct their own knowledge byperforming open-ended activities.Scholarly research into the teaching and, more importantly, the learning of physics has providedvaluable guidance for the design of innovative curricula and pedagogy 1 . The pedagogicalstrategies that are able to demonstrate high rates of student achievement, as measured bystandardized examinations, involve some form of what is commonly called interactiveengagement
training using the high performancecomputing laboratory at AAMU; (2) DOE Computational Science scholarship program atAAMU; and (3) Minority undergraduate summer research interns at the computationalscience division of Oak Ridge National Lab (ORNL). The collected data in the past six yearswere analyzed. Challenges and improvement strategies to get average student involvement inthe summer research internship and scholarship programs were presented.BackgroundAccording to the US 1990 census, the total US population was 248,709,873 in 1990. Ofthese, approximately 51% were women, 29,986,060 (or 12%) were African American,22,354,059 (or 9%) Hispanic, and 1,878,285 (or 1%) Native American. In 1995, of the total132 million U.S. civilian labor forces, only
, and present additional complexity to design. If fully taken advantage of,optimized composite structures can cut weight and life cycle cost significantly compared totraditional materials. The key issue with using composites is that the designer must engineer thematerial, process, and structure simultaneously, as they are highly interdependent.A high level of synergy exists between the faculty at the University of Dayton and the US AirForce Research Laboratory. Over the past dozen years, at least six full-time Air Force ResearchLaboratory researchers have served as adjunct faculty. In addition, many of the full-time facultyhave spent summers and sabbaticals at the Air Force Research Laboratory. The synergy hasstimulated the offering of a series