, resolve, remediate’ approach to recovery from cyber-attacks would be ineffective. According to the FBI press release given December 19, 2014, notonly was a large amount of sensitive data stolen from SPE but, “The attacks also renderedthousands of SPE’s computers inoperable, forced SPE to take its entire computer networkoffline, and significantly disrupted the company’s business operations.” 5Attackers have proven that they have the capability to perform large-scale operations againsthigh-profile targets. With these capabilities it is not feasible to assume that a plan to quarantinecompromised systems in wake of a cyber-attack while maintaining service availability will be apossible recovery method in the future. We must find ways to maximize
inUSMA’s Civil Engineering Department. It is a mandatory course for Civil Engineering majorsand civil engineering trackers, and taken as an elective by students majoring in Management.Civil engineering trackers are non-engineering majors fulfilling the Academy requirements totake a three course sequence in engineering, and civil engineering with CE450 as the culminatingcourse is an option. As an introductory construction management course, the scope is as variedas the background of the students who take it, as articulated in the course description: This course provides an in-depth study of special topics in construction planning and management. The course covers life-cycle facility management to include planning, programming, design, bid
on Lifelong STEM Learning Julie is the Associate Director of the the Oregon State University Center for Research on Lifelong STEM Learning. In this role she focuses on investigating and enhancing the quality of research impacts, working to redefine undergraduate success, and working across campus to support transformation of undergraduate STEM education practices. Julie brings experience working with research organizations at OSU including Oregon Sea Grant and the Institute for Natural Resources. Prior to her work as research administrator Julie spent many years working for non-profit organizations and as a U.S. Peace Corps Volunteer on marine conservation issues including state and regional research planning and
Paper ID #16895Developing a Questionnaire and Evaluation Methods for a High School RocketProgramMr. Ibrahim Halil Yeter, Texas Tech University Ibrahim H. Yeter is currently a PhD candidate in the Curriculum and Instruction program at the College of Education, and at the same time, he is pursuing his Master’s degree in Petroleum Engineering at Texas Tech University. He is highly interested in conducting research within the Engineering Education frame- work. Mr. Yeter plans to graduate in December 2016 with both degrees and is looking forward to securing a teaching position within a research university and continuing his
the strategies involved in the game. Henceforth it wasbeneficial to include a break for game playing at times when students appeared to be tired or loseinterest.The games primarily involved two players competing against one another in various challengesthat included subtracting numbers to reach zero, eliminating virtual matchsticks to clear theboard, filling Sudoku type squares, and connecting dots to create network patterns. All of thegames involved a need to observe patterns and then plan ahead in strategic ways. Severalelements of classical problem solving were required to participate in these games. Many of thegames are in the NIM category such as that illustrated on the Archimedes’ Lab website.13Students began by competing against the
featuredyear-long capstone projects for outside clients since 1988. The program had remained essentiallythe same over that time until 2011. A course instructor was responsible for all of the groups’work and each team was assigned a faculty member as coach. The projects have always been realprojects for clients with real needs.Early in capstone projects, the groups’ work often required the expertise of a faculty member tomentor field and lab work even though that faculty member was not the team coach or courseinstructor. The field and lab work can be of lesser quality because the teams failed to adequatelyuse the faculty expert to plan their work. Later, during project design, the sub-discipline designrequired on each project was not always mentored by
instructional component as it relates to the situativeframework; provide an explanation of how AR technology supports the instruction ofengineering concepts; and provide a more tangible view of instructional design using a fourthgrade lesson plan for teaching circuitry.Guidelines to Situating ARTable 1 summarizes the guidelines for integrating an AR application for teaching and learningelectrical engineering concepts. We propose that following this guide, engineering educators canwork with elementary teachers to incorporate AR into lesson plans to provide a more tangibleand engaging environment for the students. First, we will review the three principles thatsummarize situative learning theory and will form the basis for the guide as suggested
(Katerina) Bagiati, Ph.D.: After graduating with a Diploma in Electrical and Computers Engi- neering and a Masters degree in Advanced Digital Communication Systems from Aristotle University in Thessaloniki, Greece, Katerina Bagiati was in 2008 one of the first graduate students to join the pioneer School of Engineering Education at Purdue University. In 2011 she acquired her Doctorate in Engineering Education, followed by a post-doctoral associate appointment within the MIT-SUTD Collaboration at the Massachusetts Institute of Technology (MIT), and she is currently a research scientist working at the MIT Scheller Teacher Education Program in the Department of Urban Studies and Planning and the MIT Of- fice of Digital
has a single Electrical Engineering Instructor whoadvises all groups and oversees all projects. Lectures are once per week and serve the purpose ofreinforcing the design process by introducing techniques for project management, research,design process management, prototype planning, and effective presentations and writing skills.The Computer Engineering capstone course consisted of 8 projects. Three were sponsored byindustry and a fourth was a collaborative effort between the CE capstone class and the UCSBDepartment of Ecology, Evolution and Marine Biology. Other projects were student defined.One of the industry sponsored projects was the CE contribution to the SpaceX Hyperloop Podcompetition described above. The technical focus of this team
the Georgetown EnergyCompetition, which aims at reducing electrical and natural gas use within the city over the nexttwo years. A Department of Energy (DOE) grant was also recently awarded to facilitate theinstallation of the first MW of solar photovoltaics in the community. In 2017, the DistrictHeating Plant in downtown will be converted from an inefficient steam system to hot water.Along with these efforts by the city, the local sanitary district is making great strides towardbecoming more sustainable through the installation of biogas digesters, with future plans for acombined heat and power system on site.The University has also been heavily involved in the sustainability movement and has beenactively pursuing sustainability goals for
research interests, in collaboration with the Medical College of Wisconsin (MCW), include developing clinical applications of functional mag- netic resonance imaging, including presurgical planning and evaluation of rehabilitative outcomes after injury or pathology. Ropella is co-director of the Functional Imaging Ph.D. program, jointly offered with MCW. Ropella has twice received the college’s Outstanding Teacher Award (1994 and 2002), the univer- sity Faculty Award for Teaching Excellence (2002) and was named the Wisconsin US Professor of the Year by The Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support for Education (2007). Among other honors, she was the recipient of the
Paper ID #13473Developing an Interdisciplinary Healthcare Improvement WorkforceDr. James Benneyan, Northeastern University Dr. James Benneyan is former senior systems engineer at Harvard Community Health Plan and founding director of the Healthcare Systems Engineering Institute at Northeastern University, including three NSF and CMS funded centers and five undergraduate through post-doctoral degree, internship, and fellow- ship programs. Jim is faculty and senior fellow at the Institute for Healthcare Improvement, holds joint appointments in Northeastern’s engineering and health sciences colleges, and past is President
dimensional tolerances,constrained component dimensional sizes, use of a variety of materials, time-constrained processlimits, and use of some commercial off-the-shelf parts in the assembly. A course developmentobjective was to include as many students as possible per section due to the rapid enrollment growthin Mechanical Engineering over the past five years. This objective resulted in a ‘flexiblemanufacturing’ approach to the product design, whereby some components could be processed atdifferent stations independently of the order in which the processes occurred. New equipmentintegration was also included in the laboratory development. Presented are student evaluations ofthe laboratory plus design modifications implemented and/or planned after two
engineered systems. Email URL http://www.ou.edu/content/coe/ame/people/amefaculty/mistree.html LinkedIN http://www.linkedin.com/pub/farrokh-mistree/9/838/8baMr. Lucas Balmer, University of Oklahoma Lucas Balmer is a second year master’s student at the University of Oklahoma studying mechanical en- gineering. He has been working as a graduate teaching assistant for three semesters in design orientated courses. With this experience he is working on his thesis titled ”A Framework for Designing Courses that Support Design Thinking.” After graduation Lucas plans to work in the automotive industry.Dr. Warren F Smith, UNSW, Canberra, Australia Dr Warren Smith is a Senior Lecturer in the School of Engineering and Information
specifics of various monumentsmore clearly. For this specific simulation, the intent is to replicate the construction of the Roman Colosseum in twodifferent ways – a unique undertaking – which can be adjusted for presentation to various audiences, rangingfrom academic scholars in history or engineering to students in relevant topics. The expected outcome is anassembly of the structure that can be viewed from both the inside and outside. The “top-down” approach,which divides a completed monument into multiple stages, is useful for defining the overall plan of thestructure, but presents a risk of large amounts of data slowing down the simulation process. In contrast, the“bottom-up” approach, which creates the structure in a piecewise fashion, may
Oregon Sea Grant and the Institute for Natural Resources. Prior to her work as research administrator Julie spent many years working for non-profit organizations and as a U.S. Peace Corps Volunteer on marine conservation issues including state and regional research planning and policy initiatives, citizen-science water quality monitoring and enforcement, marine habitat restoration, marine reserves establishment and monitoring, endangered species conservation and management, and community-based conservation pro- graming in the Pacific Islands. Julie has a MSc. in Marine Resource Management from OSU. She serves as an advisor to the office of research development, and serves on the National Alliance for Broader Impacts
Emergency Managementprofessionals. The university approved the curriculum for Emergency Management Technologyprogram in the Fall of 2010. The program began admitting students in Spring Semester of 2011.The curriculum focuses on topics such as emergency planning, incident command, disasterresponse and recovery, hazard identification and mitigation, agency coordination, homelandsecurity, and community emergency training [3].The primary goal of the EMT program is to help students gain a well-rounded skill set that willallow them to succeed in a homeland security or emergency management position. To reach thisgoal, the existing courses in Emergency Management Technology need be enriched to inductcontents of telecommunication, nuclear technology
visiting or tenure track positions.IntroductionInternational faculty join US institutions to teach in engineering programs among otherprograms. The positions they pursue could be permanent as in tenure-track positions ortemporary as the case in visiting positions or other forms of employment. An internationalfaculty member pursuing a career in academia is usually faced with a decision regarding the kindof position he/she plans to take. Those who love research activities will pursue a career ininstitutions that also value research activities more that teaching. Others who love teaching anddesire to keep it their main focus are likely to pursue a career at teaching institutions that valueteaching excellence and without great emphasis on research
enhancing mentorshipof upcoming librarians, and the mentoring of practicum students. We will also discuss thementoring of new librarians by experienced librarians within UTL, including the creation of the“Mentoring Interest Group”, mentoring for permanent status and promotion, mentoring contractlibrarians and the impact of direct mentoring in a medium sized library from the head librarian.Future mentoring initiatives currently in the planning stages at ECSL for the engineeringlibrarian community at large will also be explored.3. Mentoring at University of Toronto Libraries and the Engineering & Computer ScienceLibrary3.1 The University of Toronto and the Engineering & Computer Science LibraryThe University of Toronto (U of T) consistently
change, disruptive/transformative innovation, development studies, strategic planning, and public policy. Mahmoud has authored/co-authored 50+ peer-reviewed published papers in well-reputed international conferences and journals, in addition to 25+ institutional/curricular frameworks and internal reports. Mahmoud has attained a number of research funding grants from the UK, Malaysia, and Qatar, and won a number of awards and scholarships during his studies and professional career. After finishing his Doctorate, Mahmoud worked as a researcher at Loughborough University, UK. In Fall 2011, he moved to Qatar University (QU), Qatar, as a faculty member with the Dean’s Office, College of Engineering. In Fall 2012, Mahmoud
in leadership positions for numerous professional organizations. Page 26.1585.1 c American Society for Engineering Education, 2015 Time Management Skills and Student Performance in Online CoursesAs educators, we have the almost daily task of turning students’ goals into the reality ofcompleted degrees. In part, we accomplish this by requiring students to spend time with coursecontent. Students, in turn, must plan and use their time effectively in order to accomplish coursegoals and objectives. Online courses present special challenges for student engagement andeffective time management
including co-op and research abroad and established meaningful connection for research and attraction of funded international graduate students. Maria started working at Texas A&M in 2005 as Assistant Director for Latin American Programs and in 2009 she was promoted to Program Manager for South America in the same office. During her time at the Office for Latin America Programs she created, managed and developed projects to enhance the presence of Texas A&M University in Latin American and to support in the internationalization of the education, research, and outreach projects of the university. She was charged with the development and implementation of a strategic plan for Texas A&M in South America. While
assumptions, measurement instruments, and methodological approaches used byresearchers will also vary substantially based on their position in this debate.The other great debate in recent years is an outgrowth of new methods that have been introduced inentrepreneurship education and practice. These methods, although existing in some form in businessliterature for decades (Mintzberg & Waters, 1985), have been popularized more recently as “LeanStartup” or “Lean Launchpad” methods (Blank & Dorf, 2012; Ries, 2011). The advent of these newapproaches has created turbulence among educators and researchers. Many have been quick to “golean” and discard methods that favor a more traditional planning approach, while others have arguedfor the need to
textbooks, and technical reports, many in the area of process planning and improvement, and has been an invited speaker or panelist at numerous technical symposia. He is co-author of the textbook Applied Integer Programming, published by Wiley in 2010. From 1979-84, Bob was a senior operations research analyst with Lockheed Corporation. At Lockheed, he worked in conceptual and preliminary design of aircraft and missiles, performing mission effectiveness, cost, and risk analysis. He received a Ph.D. in Mathematics and an M.S.I.E. from Alabama in 1979, and a B.S. in Mathematics/Physics from Alabama in 1972. Since 1996, Bob has been a Registered Professional Engineer in quality engineering in the State of California. He is
monthsthe space has been active. Planning such a space is a traditional activity. Visions of its use may, however, beoptimistic and pessimistic at the same time. How students use the space has surprised bothfaculty and college administration. Our goal has been to use the space as an organizing conceptfor a diverse array of activities ranging from high school robotics competitions to senior capstoneprojects. Subsequent to its introduction in February of this year, a study was conducted ofstudent awareness. This study informed us of the increased challenges in marketing the use of thespace. We have evolved a mentorship program to support students working in the space. Thepast six months have seen overuse by classes, exciting design
has evaluated and debated the merits of international service learning from theperspective of the student, but little research exists to assess the success and sustainability of anengineered infrastructure system over an extended period of time from a developingcommunity’s perspective. The University of Illinois at Urbana-Champaign (UIUC) hasimplemented a new course that will exist for ten years and will bring together the College ofEngineering, along with departments of Kinesiology and Community Health, Anthropology,Global Studies and Regional and Urban Planning, to collaboratively teach an undergraduateresearch-focused course elective targeted at evaluating baseline conditions precedingimplementation of a new irrigation system for the
standards rich incontent and practice that are coherent across disciplines.3 The NGSS (2013) indicates thatengineering must be a fundamental part of the new framework since students are required todevelop the capability to carry and transfer knowledge across science disciplines throughmodeling, planning, conducting investigations, analyzing and interpreting data, andconstructing explanations to demonstrate understanding of core science ideas. Students “mustbe able to apply scientific ideas to solve a design problem, taking into account possibleunanticipated effects”.3Our approach to broadening participation is based on what we know works to engage girls inengineering. We know that precollege and college design classes have a much higherpercentage
, is a one-credit, semester-long course. This course is a graduation requirement across all undergraduate degree plans at theuniversity and its primary aim is to assist new students during their initial academic and socialtransitions to the university. Students enrolled in the course receive information about campusand academic resources, and highly encourages participation in and out of the classroom. Thecourse is taught by full-time staff who represent most of the student service areas on campus,(non-engineering) faculty, and upper administration. The course is coordinated by the AssociateDirector of Transfer and Transition Programs in the office of First Year Experience, adepartment that reports to the Vice President of Student
for curriculum, pedagogy, and projects. Middle and high schools have historically facedchallenges introducing engineering into the curriculum in an inclusive and authentic manner.Because these students are still flexible about their career decisions3,4, programs that peakinterest can still influence students’ college and career plans. An inclusive approach could havesignificant impact on the diversity of the engineering workforce.A large public university implemented EPICS (Engineering Projects in Community Service) forundergraduates in 19955,6. The approach has been successful in preparing students professionallyas well as addressing compelling needs locally and globally. The program has also shown that itis an inclusive approach to
, the range of course topics isquite varied across chemical engineering (e.g., fluid-particle systems, catalysis, fuel cells) andmathematical topics (e.g., fractals and nonlinear systems). Another challenge in developing thecourse was to determine the balance of the chemical engineering and mathematical prerequisites.Although this was a senior (fourth-year undergraduate) and graduate-level Master’s chemicalengineering course, not all students had the same undergraduate background.Since both instructors were initially located on different continents, planning meetings by Skypeoccurred in the year prior to offering the course, and course approval was obtained by ProfessorCoppens at University College London. Once Professor Lepek was on campus at