protection, corporate security, and partner compliance solutions for multiple Fortune 500 companies in the consumer packaged goods, energy, financial services, hospitality and technology industries. While at Booz Allen Hamilton, Dr. Green provided technical and programmatic direction to the DARPA Special Projects Office (SPO), Army Research Lab (ARL), Defense Technical Information Center (DTIC), Information Assurance Technology Analysis Center (IATAC), and other DoD clients for advanced prototype systems research. He performed analysis tasks and provided strategic vision for his clients in the areas of survivability analysis, roadmap studies, threat analysis, and technology simulation and modeling. Dr
difficult transition. To shed light on thechallenges faced by these students, Author 1 proposed the initial framework for this project toAuthor 3, who contributed to the comprehensive conceptualization of this exploratory study.Author 2 joined the team after most data analysis was completed and helped write the findingssection of the paper. Author 2 is a civil engineering undergraduate student and an undergraduateresearcher working under Author 3. All authors identify as white women.FindingsAfter conducting a thematic analysis on the data, we observed recurring themes that wereprevalent among professors with comparable levels of experience. As a result, our findings arestructured according to the experience levels of the participants. Table 2
students set priorities in engineering design,Cynthia et al., 2008 [31] used a mixed methods approach to examine how engineering studentsuse their design skills to solve real-world problems. They found that engineering students aremore likely to think like professionals in their senior year compared to freshmen students, whoapproach design issues based on their introductory courses. The senior students also prioritizedmetrics such as budget and safety, leading them to conclude that capstone students are able tofocus on an holistic design solution compared to the first-year students, whose focus was basedon getting the project done faster [31]. Another study by Zheng et al., 2018 [32] involvedassisting students in engineering design process. The
technocentric process in favor of emphasizing itsinherently sociotechnical nature [38]. Forbes et al. [38] have put the ExSJ into practice at theirhome institution, University of San Diego, leveraging eight mechanisms that “support theco-created solving of sociotechnical problems, including community forums, community awards,scholar schemes, professional development events, a pro bono professional network, courses,capstone design projects, and research sponsoring undergraduate engineering” [p. 4]. Inparticular, they highlight their elective course, Community-Based Participatory EngineeringApprenticeship. This course provides space for students and local communities groups tocollaborate with one another “to share knowledge and understanding and to co
developing rubrics to increase reliability when used by multiple raters, and in the development and improvement of alternative assessment methods to demonstrate student attainment of course learning outcomes.Jenni Buckley (Associate Professor) Jenni M. Buckley is an Associate Professor of Mechanical Engineering at University of Delaware (UD). She has over 10 years of engineering experience in medical device design and biomechanical evaluation and has research interests in human factors design, medical device development, and equity and inclusion issues in engineering education. She teaches a range of courses across the mechanical engineering curriculum, including CAD, mechanics, and capstone design; and she is the Co
collected course descriptions, we removed those that refer to special courses, e.g.,“Research Experience for Undergrads”, “Graduate Research”, “Project Research”, “Capstone”,“Cooperative Education in Computing”, “Special Topics”, “Independent Study”, “VerticallyIntegrated Projects”. If a course has multiple sections, we aggregate them into one, and considerthem as a single offering, since the course description will be the same for all sections. We alsoremoved courses that had less than five students enrolled, as in that case, the percentage of maleversus female would be less meaningful and could have an unintended effect when aggregatingthem with other courses with higher enrollment numbers. In the departments of BME, CEE, CIS,ECE, we have 31, 62
that readymade input/output blocks do notexist for most microcontrollers, sensors, and actuators and would need to be created whenworking outside of highly specialized contexts. When students proceed to implement a controlsystem in a subsequent capstone design or industry project, they will need to work out the detailsof implementation themselves, using their improved physical intuition as a compass. One benefitof this approach is that students were not overwhelmed by the task, and they rated the difficultyof these labs as between “fair” and “easy”. However, this may suggest there was an opportunityto expose students to a more of the challenging elements of hardware implementation.Taking a different approach, Goodwin et al. developed a series
•Raw Notes In person Lab sessionFigure 1: Traditional Lab ProcessThe primary benefit of this lab is the physical interactive experience that students have withinstruments and data, providing an important connection to the theory and thus improvinglearning, which Kolb describes as “a process whereby concepts are derived from andcontinuously modified by experience”[4, p. 26]. In addition to the lab report, it is common toinclude a practical assessment of the students’ ability to physically operate equipment. Thesepractical skills can then be used in a future capstone project, internships, and other coursework.There are, however, some drawbacks to the traditional surveying lab process. These include
." Journal of Engineering Education 103.4 (2014): 525-548.[4] Hmelo, Cindy E., and Xiaodong Lin. "Becoming self-directed learners: Strategy developmentin problem-based learning." Problem-based learning: A research perspective on learninginteractions (2000): 227-250.[5] Mokhtar, Wael, Paul Duesing, and Robert Hildebrand. "Integration of Project-BasedLearning (PBL) into Mechanical Engineering Programs." International Journal of Learning 15.8(2008).[6] Dunlap, Joanna C. "Problem-based learning and self-efficacy: How a capstone courseprepares students for a profession." Educational Technology Research and Development 53.1(2005): 65-83.[7] Wilkerson, Stephen Andrew, et al. "Board 64: ROS as an undergraduate project-basedlearning enabler." 2018 ASEE
modeling, project based engineering design, and robotics in manufacturing.James R. McCusker, Wentworth Institute of Technology James R. McCusker is an Associate Professor at Wentworth Institute of Technology in the Department of Electrical Engineering. Since joining Wentworth in 2010, he has been heavily involved with an array of interdisciplinary design courses that range from introductory to capstone courses.Prof. Lynette Panarelli, Wentworth Institute of Technology Lynette Panarelli is an Associate Professor of Interior Design at Wentworth Institute of Technology. She teaches across the curriculum with a special interest in technology and healthcare design. Before arriving at Wentworth ten years ago, Lynette
. Solnosky is also a licensed Professional Engineer in PA. Ryan’s research interests include: integrated structural design methodolo- gies and processes; Innovative methods for enhancing engineering education; and high performing wall enclosures. These three areas look towards the next generation of building engineering, including how systems are selected, configured and designed.Prof. M. Kevin Parfitt, Pennsylvania State University M. Kevin Parfitt is an award winning teacher in the Department of Architectural Engineering at Penn State. He has over 38 years experience teaching courses ranging from Freshman Seminar to the 5th-Year Senior Thesis (Capstone experience). He is also the AE faculty coordinator for the annual AE
and Instrumentation course as well as for quality control undergraduate and graduate courses in ET Masters program. Also, she introduced the first experiential activity for Applied Mechanics courses. She is coordinator and advisor for capstone projects for Engineering Technology.Prof. Tzu-Liang Bill Tseng, University of Texas at El Paso Dr. Bill Tseng is a Professor and Chair of Department of Industrial, Manufacturing and Systems En- gineering at the UTEP. He is also a Director of Research Institute for Manufacturing & Engineering Systems, the host institute of Texas Manufacturing Assistance Center at UTEP. He received his two MSIE degrees (MFG & DS/OR) from the University of Wisconsin at Madison and Ph.D. in
Research Service Award training grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB), an institute with the National Institutes of Health (NIH). Dr. Rylander’s research is focused on imaging in ophthalmology. He has conducted clinical trials on a polarization-sensitive OCT system to measure the changes that occur in the retinal nerve fiber layer in glaucoma. Other projects include a drug delivery device for the eye and measuring blood flow in the eye. He is collaborating with researchers at UTMB to identify biomarkers of Alzheimer’s Disease in the eye.Prof. Mia K. Markey, University of Texas at Austin Dr. Mia K. Markey is a Professor of Biomedical Engineering and Cullen Trust for Higher
taking the course [3].Improving on our earlier work of designing a new digital AE/ME students could also use this knowledge in follow-oncircuit design laboratory sequence for first-year engineering or capstone design [4] courses.students and non-majors [1], we deployed three types of The students learned how to integrate sensors, motors,digital circuits laboratory sequences across four laboratory and encoders with state-of-the-art digital hardware. Usingsections at Embry-Riddle Aeronautical University—a small, electronic design automation (EDA) tools lowered the levelteaching university in the Southwest, focused on the aero- of abstraction through the use of "virtual wiring" and intro-space and mechanical
on molecular cooperativity in drug targeting, bio-sensing, and cell sig- naling. Current projects align along three main themes: local drug delivery, endothelial dysfunction in diabetes, and cooperative DNA diagnostics. Recent awards include the Jeanette Wilkins Award for the best basic science paper at the Musculoskeletal Infection Society. Dr. Caplan teaches several classes including Biotransport Phenomena, Biomedical Product Design and Development II (alpha prototyping of a blood glucose meter), and co-teaches Biomedical Capstone De- sign. Dr. Caplan also conducts educational research to assess the effectiveness of interactive learning strategies in large classes (˜150 students).Miss Courtney Michelle DuBoisMs
not well defined; embrace innovation and entrepreneurship; evaluate ideas using both qualitative and quantitative analysis tools; implement potential solutions using a variety of advanced prototyping techniques; have both a global perspective and an eye for detail; and lead when leadership is called for. Inworks MHCDI students complete a minimum of 23 credit hours, essentially completingthe certificate, plus two additional courses in a focus area of their choice and a capstoneexperience. MHCDI students must choose between two capstone options. The first is a moretraditional team-based semester-long project. In the second option, teams of students envisionand create a
a project that investigates the use of engineering as a context in which to learnmathematics through an evaluation of a LEGO-based robotics curriculum. We performed acontent analysis of the curriculum in order to identify the types of mathematics topics thatstudents would have an opportunity to learn, and investigated the extent to which those topicswere aligned with national mathematics standards. The curriculum had a large percentage oftasks with clear relevance for mathematics and aligned well with the standards at the level ofbroad, topic areas (e.g., measurement, algebra, etc.). The curriculum was not well aligned at themore specific, topic level (e.g., use of measuring instruments, evaluating expressions, etc.),indicating that level
thestudents to have an experience that would assist them whether they went into the automotiveindustry or the medical industry. In fact, one particular student was able to demonstrate moreknowledge of programming robots than the engineers he was working under. He showed amastery of the skill and has been successful because of it. Additionally, the laboratory setup andequipment contained within have benefited the students beyond imagination, giving them realworld experience in many areas of applied controls. This experience has begun to leak into otherareas of the curriculum and has produced more advanced senior capstone projects and enabledthe interface of robots to a plastic injection molding machine in a course on plastic technology. The
-disciplinary course is held in a large lecture hall with a class size normally exceeding100 students. The course focuses on introducing students to the profession through topic lectures,videos and a capstone project (normally something mechanical in nature). After analysis of thetopics and via discussions with chemical engineering students who have taken this class, it wasclear that certain important pieces of information, including things specific to chemicalengineering students, were never being discussed or even conveyed. Hence, the next logical stepwas to generate a separate class, Introduction to Chemical Engineering, which was to be requiredof all entering chemical engineering freshman. Note that this course, labeled ChE 1010, iscurrently not a
. He is interested in motivation of engineering students, peer-to-peer learning, flat learning environments, technology assisted engineering education and experiential learning. He is the coordinator of the industry sponsored capstone from at his school and is the advisor of OU’s FSAE team.Prof. Yingtao Liu, University of Oklahoma Dr. Yingtao Liu is an assistant professor in the School of Aerospace and Mechanical Engineering at the University of Oklahoma (OU). Before joining OU, he was an assistant research scientist in the AIMS center at Arizona State University from 2012 to 2014. His research expertise include the development, ad- vanced manufacturing, and application of lightweight composites and nanocomposites
- gineering, capstone design, HVAC, thermodynamics, waste management, professional development, and engineering teaching. Her research interests include energy, the environment, and engineering education. She is assistant dean for teaching and learning in the College of Engineering. She is a second-generation woman engineer.Dr. Teresa A. Johnson, Ohio State University Teresa A. Johnson, Ph.D. is an assistant director and the Coordinator for Assessment and Curriculum Design at the University Center for the Advancement of Teaching at The Ohio State University. She earned a doctorate in Microbial Ecology at the University of Illinois at Urbana-Champaign. She has taught in the sciences at Butler University and at the College
advisory board of these key campus stakeholders to get feedback on theprogrammatic development and generate ideas for future endeavors. Figure 4: Timeline of OHI/O program developmentFor program development, be sure to work with curricular partners, such as departments ofcomputer science, electrical engineering, physics, or data analytics, as well to find ways tointegrate hackathon and makeathon products into semester-long capstone projects, independentstudies, or other coursework. This process of building on event successes allows motivatedstudents opportunities to continue to work on their projects beyond a weekend event. The studentleaders have now increased their independent study credits by engaging on a project that may
Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teaching practices in design education, the effects of differing design pedagogies on
Paper ID #28642Correlating the student engineer’s design process with emotionalintelligence.Dr. Ryan H Koontz, South Dakota School of Mines and Technology Ryan Koontz received his Bachelor’s degree in Mechanical Engineering in 1999 and an M.S. degree in mechanical engineering in 2002 from the South Dakota School of Mines and Technology (SDSMT). In 2004, Ryan joined the Center of Excellence for Advanced Multi-Disciplinary Projects (CAMP) as the manufacturing specialist. He currently instructs students of CAMP through the design and manufacturing process and helps produce parts for the co-curricular teams of CAMP. He completed
settings.Prof. Zahed Siddique, University of Oklahoma Zahed Siddique is a Professor of Mechanical Engineering at the School of Aerospace and Mechanical Engineering of University of Oklahoma. His research interest include product family design, advanced material and engineering education. He is interested in motivation of engineering students, peer-to-peer learning, flat learning environments, technology assisted engineering education and experiential learning. He is the coordinator of the industry sponsored capstone from at his school and is the advisor of OU’s FSAE team.Prof. Yingtao Liu, University of Oklahoma Dr. Yingtao Liu is an assistant professor in the School of Aerospace and Mechanical Engineering at the
new engineering education strategies as well as the technologies to support the 21st century classroom (online and face to face). He also has assisted both the campus as well as the local community in developing technology programs that highlight student skills development in ways that engage and attract individuals towards STEAM and STEM fields by showcasing how those skills impact the current project in real-world ways that people can understand and be involved in. As part of a university that is focused on supporting the 21st century student demographic he continues to innovate and research on how we can design new methods of learning to educate both our students and communities on how STEM and STEAM make up
understand theinfluences of positions and other critical factors and their interaction effects. Due to the variedapplication of RFID, the authors have incorporated the experimental set up in undergraduate,Senior Project capstone course with team members drawn from both Mechanical andMechatronics Engineering technology.IntroductionRadio frequency identification (RFID) is a broad term that is used to describe a system thattransmits the identity (in the form of a unique serial number) of an object wirelessly, using radiowaves and categorized as an automatic identification technology. RFID is designed to enablereaders to capture to capture data on tags and transmit it to a computer system- without needing aperson to be involved. The different components
-based projects, ethics, and the entrepreneurial mindset in engineering education. He also researches the development of reuse strategies for waste materials.Ms. Elizabeth Simon, Seattle University Elizabeth Simon is a civil engineering student at Seattle University, a Jesuit institution located Seattle, Washington. She moved to Seattle from Chicago, Illinois where she attended Saint Ignatius College Prep. Previously, Elizabeth spent a year at Loyola University Chicago’s John Felice Rome Center, located in Rome, Italy, where she studied art history and obtained a minor in the subject. c American Society for Engineering Education, 2017 Challenges and Opportunities: Faculty Views on
Paper ID #27319Integrating Entrepreneurial Mind-set into First-Year Engineering Curricu-lum through Active Learning ExercisesDr. Chad S. Korach, University of Mount Union Chad Korach is an Associate Professor of Mechanical Engineering and Director of Engineering at the University of Mount Union in Alliance, Ohio.Dr. Joshua Gargac, University of Mount Union Joshua Gargac is an assistant professor of mechanical engineering at the University of Mount Union in Alliance, OH, where he advises the mechanical engineering senior capstone projects and SAE Baja team. In addition, Dr. Gargac teaches first-year engineering courses
laboratory course will be shared. Inaddition, the students’ perspectives of writing transfer from FYC to the introductory engineeringlaboratory course will be discussed.1. IntroductionIn spite of the emphasis engineering practitioners place on communication, surveys of employersand alumni continue to show low satisfaction with the writing preparation engineering studentsreceive1,2. Often, students in the engineering program express enjoying hands-on activities, suchas engineering labs or capstone projects; however, they dislike writing lab reports or projectreports. Many studies report that engineering students struggle with writing in engineeringprograms. There are ongoing research efforts addressing the need for efficient writing skills.Conrad et