AC 2008-204: THE USE OF UNDERGRADUATE STUDENTS IN A LONG-TERMAIR POLLUTION REDUCTION RESEARCH PROJECTJohn Reisel, University of Wisconsin - Milwaukee John R. Reisel is an Associate Professor of Mechanical Engineering at the University of Wisconsin-Milwaukee (UWM.) He serves as Director of the Combustion Diagnostics Lab, Associate Director of the Center for Alternative Fuels, and co-Director of the Energy Conversion Efficiency Lab. His research efforts focus on combustion and energy utilization. Dr. Reisel was a 2005 recipient of the UWM Distinguished Undergraduate Teaching Award, the 2000 UWM-College of Engineering and Applied Science Outstanding Teaching Award, and a 1998 recipient
in-place(through careful discussion) technical assignments to emphasize needed communication; theengineering student will be more willing to accept and investigate the need for communicationskills.This paper addresses a widely ignored fact, “Engineering professors ARE English teachers!” Theydo not teach literature or the structure of the novel. They do not provide grammar quizzes everyFriday. And they certainly don’t give popular movie reviews of all the shows they watched on agiven weekend. On the other hand, they spend a great deal of their professional lives writing journalarticles and conference papers, reviewing articles written by other faculty, and being the mentors foruntold numbers of theses and dissertations. It would be an
engines. Substances may be placed in the exhaust stream to make visible theescaping gas. For example, copper strips placed in the velocity field downstream of the exhaustnozzle would turn this high temperature gas green. Professors may choose to give point datarather than profile data at the exhaust nozzle exit (rather than the compressor exit) to bafflestudents. Data acquisition systems can be added to the engine to measure real time temperaturesand pressures. This provides the opportunity of adding a load cell to the engine stand to measurethrust and have students compare that value with their integrated values. Many parameters canbe altered or added in order to teach students to think when conducting laboratory experiments.The lesson learned
knowledge and attributes that willpositively influence their learning outcomes if those assets are acknowledged and nurtured.College faculty, higher education institutions, and specifically engineering programs may lack anunderstanding of just how important and liberating it is to approach teaching and learning withan asset-based mentality [6]. To truly understand asset-based pedagogical practices, thisliterature review will explore three specific themes that honor and underscore its importance: 1)recognizing diverse assets within diverse students, 2) building on the strengths that are present inunderrepresented students in engineering programs, and 3) the realization of empoweringstudents when asset-based pedagogy is practiced.Recognizing diverse
dynamics and effectiveness.Teams are easily observed during classroom or laboratory workshops, either whencomputational, deliberation, or laboratory activities are being done. If agreeable, teams can befilmed or photographed. Candid still photos taken by a teaching assistant have also been found tobe helpful at identifying ineffective team behaviors. Some common problems observed include: Page 22.1341.11distracted students, e.g. using computer to surf or view Facebook or texting on cell phone duringteam meeting; unengaged students, e.g. a student that never contributes and works off to the sidewhile others appear engaged; disconnected team, e.g
with states and institutions to improve student success in college, particularly with Complete College America (CCA). At University of Colorado Boulder, Heidi is a Senior Research Associate in Ethnography & Evaluation Research, a center focused on STEM education. She recently was the project lead in transforming teaching evaluation practices in the College of Arts & Sciences. A fourth-generation Coloradoan and educator, she lives in Denver with her husband, two college-aged children, and rescue dog.Mr. Nick Stites, University of Colorado Boulder Nick Stites is the Director of the Integrated Teaching and Learning Program at CU Boulder and an instructor with the Integrated Design Engineering program. Dr
Paper ID #46376Student Self-Reported Knowledge Gains from Reflection Implementation inTwo Biological and Agricultural Engineering CoursesChristopher Isaac Camacho, University of Texas at El Paso Christopher Camacho is an undergraduate student pursuing a B.S. in Engineering Innovation and Leadership with a concentration in Electrical Engineering at The University of Texas at El Paso. He serves as a teaching assistant and student researcher at the Center for Research in Engineering and Technology Education (CREaTE). In the summer of 2024, he participated in an NSF Research Experience for Undergraduates at the University of
Professor of Mechanical Engineering. He teaches courses on thermodynamics and fluid mechanics, renewable energy and energy conversion, heat transfer, and mechanical engineering design. He received his Ph.D. from the University of Florida, where he researched thermodynamics and renewable energy systems. His research at West Point has included laser target interaction, sustainable energy for installations, deployed military energy usage, and designing field expedient capabilities and weapons systems for soldiers.Jacob Daniel Reddington Josh Dean is an Assistant Professor in the Department of Civil and Mechanical Engineering at the United States Military Academy at West Point, NY. He is a graduate of West Point, earning a B.S
Paper ID #38072The Impact of Short Mindfulness Practices on Student Attention and Focusin Upper-Level Civil Engineering Design ClassDr. Priyantha Wijesinghe, University of Vermont Priyantha Wijesinghe is a Senior Lecturer in Civil and Environmental Engineering and Director of Curric- ular Enrichment for the College of Engineering and Mathematical Sciences (CEMS) at the University of Vermont (UVM). Priyantha is a structural engineer and architect by education and is an engineering edu- cation and assessment expert. As the Director of curricular enrichment, she has organized and facilitated numerous teaching and assessment
strategies in the statics classroom. Currently, Dr. Cutler works as an assessment and instructional support specialist with the Leonhard Center for the Enhance- ment of Engineering Education at Penn State. She aids in the educational assessment of faculty-led projects while also supporting instructors to improve their teaching in the classroom. Previously, Dr. Cutler worked as the research specialist with the Rothwell Center for Teaching and Learning Excellence Worldwide Campus (CTLE - W) for Embry-Riddle Aeronautical University.Dr. Swaroop Ghosh, Penn State Swaroop Ghosh received the B.E. (Hons.) from IIT, Roorkee, India, the M.S. degree from the University of Cincinnati, Cincinnati, and the Ph.D. degree from Purdue
institutions ofhigher education throughout the U.S. have experienced additional demands necessitated by themove to online platforms for all teaching and administrative work, as well as strains placed onresearch agendas as laboratories have been closed, fieldwork has been limited, and in-personcontact has been curtailed. At the time of this writing, many universities have remainedshuttered, relying on remote instruction and administration; others have adopted hybrid models.Of those that attempted to fully open for in-person instruction in fall of 2020, many had to asquickly shut down again and send students home, as outbreaks have followed openings [41, 42,43, 44].The economic impacts of the pandemic on the U.S. are many and range in severity. The fall
. Atkins, D. M. Levin, and J. Richards, “What is Responsive Teaching?” in Responsive Teaching in Science and Mathematics, A. D. Roberton, R. E. Scherr, and D. Hammer, Eds. Routledge, 2016, pp. 1–35. [9] E. Wenger and J. Lave, Situated Learning: Legitimate peripheral participation. New York: Cambridge University Press, 1991.[10] P. W. Irving and E. C. Sayre, “Conditions for building a community of practice in an advanced physics laboratory,” Physical Review Special Topics - Physics Education Research, vol. 10, no. 1, p. 010109, 2014.[11] E. Wenger, Communities of Practice: Learning, Meaning, and Identity. New York: Cambridge University Press, 1998.[12] E. Wenger, R. McDermott, and W. M. Snyder, Cultivating Communities
student achievement or motivation, itis to examine changes in instruction when teachers implement an inquiry-based program. To examine what traditional and inquiry practice look like in a classroom, it is necessaryto first define these terms. As stated previously, inquiry is most commonly associated with the Page 12.830.2theory of constructivism. Teaching through inquiry has its roots in education as early as thebeginning of the nineteenth century with John Dewey and his laboratory school8. Theorists likePiaget, Vygotsky, and Bruner examined cognitive development and advocated an activeeducational setting where students construct their own
, University Park Stephanie Cutler has a Ph.D. in Engineering Education from Virginia Tech. Her dissertation explored faculty adoption of research-based instructional strategies in the statics classroom. Currently, Dr. Cutler works as an assessment and instructional support specialist with the Leonhard Center for the Enhance- ment of Engineering Education at Penn State. She aids in the educational assessment of faculty-led projects while also supporting instructors to improve their teaching in the classroom. Previously, Dr. Cutler worked as the research specialist with the Rothwell Center for Teaching and Learning Excellence Worldwide Campus (CTLE - W) for Embry-Riddle Aeronautical University.Dr. Swaroop Ghosh, Penn State
Computing, University of Winnipeg Winnipeg, Manitoba R3B 2E9, Canada / 4 Department of Computer Science, University of Nevada, Las Vegas, Nevada 89154This paper describes an approach to integrating software engineering concepts and principlesinto the Electrical and Computer Engineering (ECE) and Computer Science (CS) curricula. Ourphilosophy is to apply software engineering techniques throughout the ECE/CS curricula toleverage learning in non-software engineering courses. Our technique is to seek out facultyinterested in innovative teaching techniques, consult with them to identify some way that theyand we feel a course they are teaching could
naturally occurwithin social contexts (Lofland, 1971; Merriam & Tisdell, 2016). This approach assumes thatpeople’s values, attitudes, and behaviors are shaped by the social situation. Consequently,ethnographic researchers gather multiple types of qualitative data such as observations,interviews, and documentary evidence. This allows them to understand the context-dependentnature of people’s actions in naturalistic settings. Since the 1970s, educational research hasincreasingly adopted the ethnographic approach (Gordon et al., 2011; Green & Bloome, 2004).Its application spans various domains in education, including medical education (Reeves et al.,2013), second language teaching (Flowerdew & Miller, 1995), and social science education
experiences to enhance students’implementation of design methodology,” presented at the ASEE Annual Conference and Exposition,Conference Proceedings, 2015.[8] J. W. Creswell and C. N. Poth, Qualitative Inquiry and Research Design: Choosing Among FiveApproaches. SAGE Publications, 2016.[9] D. P. Crismond and R. S. Adams, “The Informed Design Teaching and Learning Matrix,” Journal ofEngineering Education, vol. 101, no. 4, pp. 738–797, 2012, doi: 10.1002/j.2168-9830.2012.tb01127.x.[10] C. Cvetkovic, S. Lindley, H. M. Golecki, and R. Krencik, “Biofabrication of Neural Organoids: AnExperiential Learning Approach for Instructional Laboratories,” Biomed Eng Education, Apr. 2024, doi:https://doi.org/10.1007/s43683-024-00145-7.[11] D. Gatchell and R
AC 2010-2414: THE ENGINEERING PROFESSOR OF 2020: THE FORGOTTENVARIABLELueny Morell, Hewlett-Packard Lueny Morell, M.S., P.E., is Program Manager in the Strategy and Innovation Office staff of Hewlett Packard Laboratories (HPL) in Palo Alto, California. She is responsible for facilitating external research collaborations for HPL and lead initiatives focused on R&D talent development, collaborating with external partners (government entities and other corporate labs) to pursue strategies and initiatives of benefit to the research community. In the past, she was in charge of developing engineering/science curriculum innovation initiatives worldwide in support of HPL research and technology
in engineering requires that students understand their professional and ethicalresponsibilities. ABET also asks programs to ensure that students integrate ethicalconsiderations into a "major design project." Even a quick look at these ethics requirementsmakes it clear that the ethical component of this new engineering curriculum cannot becompletely delegated to the ethics expert, for example, a philosopher who would teach afreestanding course in engineering ethics required of all engineering students. For reasons thatwe will discuss below, the freestanding course, while an essential part of a successfulengineering program, does not by itself achieve the integration of ethics into the engineeringcurriculum that ABET requires.One of the
Paper ID #46825Analyzing the Impact of Two Co-Curricular Undergraduate Experiential LearningPrograms on STEM Students’ Career ReadinessDr. Rea Lavi, Massachusetts Institute of Technology Dr. Rea Lavi is Digital Education Lecturer and Curriculum Designer with the Dept. of Aeronautics and Astronautics in the School of Engineering at MIT, where he leads the integration of cutting-edge technologies such as virtual reality and generative A.I. into residential education. He is also Lecturer and Curriculum Designer for the New Engineering Education Program (NEET) in the same school, for which he teaches a first-year problem
Paper ID #38923Board 72: How to Develop Engineering Students as Design Thinkers: ASystematic Review of Design Thinking Implementations in EngineeringEducationMiss Yuwei Deng, King’s College London I am a first-year Ph.D. student in the School of Engineering at King’s College London. My research interests are designing and implementing convergent design thinking for engineering higher education.Dr. Wei Liu, King’s College London Dr Wei Liu is Senior Lecturer (Associate Professor) at King’s College London with extensive teaching and research experience across design, engineering and management. Wei accomplished her PhD at the
review for difficult concepts; he highlighted cognitiveload theory and related it to problem-based learning [9]. In this work, he highlights thatmeasurement variation, which uses probability and statistics, is the difficult concept targeted in Page 26.840.9his research. He argued the effectiveness of scaffolding with worksheets in a laboratory settingover lectures and textbooks in problem-based learning in order to teach difficult engineeringconcepts.Other researchers, in proving the usefulness of simulations for teaching, highlighted typicalproblems that students encounter. In broad categories, students have difficulty with generatinghypotheses
necessityfor change in the ways that engineering instructors teach their students, instructors havegenerally been slow to adopt new teaching practices advised by researchers [2]. Interaction withstudents is a fundamental aspect of teaching that instructors have the ability to directly impact.Current literature in engineering education research points to the idea that increasing student-instructor interaction and communication contributes greatly to student success in engineeringand design courses [3], [4]. In Spring 2020, the COVID-19 outbreak resulted in a transition todistance learning for academic institutions across the globe, and this change required engineeringinstructors to reevaluate the ways in which they were able to interact and communicate
, microelectromechanical systems, and the electrical and magnetic properties of materials.James Drewniak, Missouri University of Science and Technology James L. Drewniak (S’85-M’90-SM’01-Fellow’07) received B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Illinois at Urbana-Champaign in 1985, 1987, and 1991, respectively. He joined the Electrical Engineering Department at the University of Missouri-Rolla in 1991 where he is one of the principle faculty in the Electromagnetic Compatibility Laboratory. His research and teaching interests include electromagnetic compatibility in high speed digital and mixed signal designs, electronic packaging, and electromagnetic compatibility
Biologists http://www.aspb.org/ASPP American Society of Plant Physiologists http://www.aspp.org/ASQ American Society for Quality http://www.asq.org/ASTC Association of Science Technology Centers http://www.astc.orgAVMA American Veterinary Medical Association http://www.avma.org/AWAA American Water Works Association http://www.awwa.org/Biophysical Society http://www.biophysics.org/BFRL Building and Fire Research Laboratory http://www.nist.gov/bfrl/ESA Ecological Society of America http://www.esa.org/FASEB
Society http://www.biophysics.org/BFRL Building and Fire Research Laboratory http://www.nist.gov/bfrl/ESA Ecological Society of America http://www.esa.org/FASEB Federation of American Societies for Experimental Biology http://www.faseb.org/FMB Federation of Master Builders http://www.fmb.org.ukFMS Federation of Materials Societies http://www.materialsocieties.org/Geochemical Society http://www.geochemsoc.org/Geological Society of America http://www.geosociety.org/HFES Human Factors and Ergonomics Society
Paper ID #12167What makes an undergraduate course impactful? An examination of stu-dents’ perceptions of instructional environmentsDr. Alexandra Emelina Coso, Georgia Institute of Technology Alexandra Coso is a Postdoctoral Fellow at Georgia Tech’s Center for the Enhancement of Teaching and Learning. She completed her Ph.D. in 2014 in Aerospace Engineering at Georgia Tech. Prior to her time at Georgia Tech, she received her B.S. in Aerospace Engineering from MIT and her M.S. in Systems Engineering from the University of Virginia. Her research interests include graduate student experiences in engineering programs, engineering
ethics.This program began with College-wide, dean’s level administration and support. Thecommunication lab and consultations space was centrally located in the main College ofEngineering building. It was in this space that the director, administrative assistant, and graduateteaching fellows also occupied office space. PhD students from the College of Humanities withinterests in instructional communication, writing/composition, and communication across thecurriculum served as strong ambassadors for the importance of disciplinary expertise. In additionto classroom instruction, communication laboratories, and student consultations, the programdirector and graduate teaching fellows offered monthly workshops targeting engineering facultyon topics related
degrees on time [15], [16]. Future work will studystudents’ on-time graduation and degree completion, as well as the factors contributing to theseparamount problems in the academic community.Conclusions and RecommendationsSeveral academic as well as non-academic factors hinder minority students’ interest, persistence,and success. These factors include poor-quality teaching and advising, a challenging curriculum,deficiencies in mathematics, uninspiring courses, lack of sense of belonging, a lack of interactionbetween students and faculty, financial difficulties, a lack of hands-on projects as well as theavailability of infrastructure and laboratory facilities [1]–[3], [8]–[11]. All of these factorsgreatly contribute to major change and dropout
Paper ID #13128An Educational Tool to Support Introductory Robotics CoursesDr. Fernando Garcia Gonzalez, Florida Golf Coast University Dr. Fernando Gonzalez joined FGCU as an Assistant Professor in the Software Engineering Program in the fall of 2013. Previously he has worked at Texas A&M International University in Laredo, Texas, the U.S. Department of Energy at Los Alamos National Laboratory in Los Alamos, New Mexico and at the University of Central Florida in Orlando, Florida. Dr. Gonzalez graduated from the University of Illinois in 1997 with a Ph.D. in Electrical Engineering. He received his Master’s degree in