, “Medical applications for 3D printing: current and projected uses,” Pharmacyand Therapeutics, 39, no. 10 p. 704. October 2014.[4] Y. Huang, S. R. Schmid, “Additive Manufacturing for Health: State of the Art, Gaps andNeeds, and Recommendations,” Journal of Manufacturing Science and Engineering, 140, no. 9,p.094001, 2018.[5] I. Fidan, A. Elliott, M. Cossette, T. Singer, E. Tackett, “The Development andImplementation of Instruction and Remote Access Components of Additive Manufacturing,”Cyber-Physical Laboratories in Engineering and Science Education, pp.331-342, 2018.[6] I. Fidan, G. Chitiyo, T. Singer, and J. Moradmand, “Additive Manufacturing Studios: a NewWay of Teaching ABET Student Outcomes and Continuous Improvement,” Proceedings of the2018
systems including design and development of pilot testing facility, mechanical instrumentation, and industrial applications of aircraft engines. Also, in the past 10 years she gained experience in teaching ME and ET courses in both quality control and quality assurance areas as well as in thermal-fluid, energy conversion and mechanical areas from various levels of instruction and addressed to a broad spectrum of students, from freshmen to seniors, from high school graduates to adult learners. She also has extended experience in curriculum development. Dr Husanu developed laboratory activities for Measurement and Instrumentation course as well as for quality control undergraduate and graduate courses in ET Masters
learning outcomes, and study the impact of social ties gainedfrom classroom activities. In short, the SNA tool will contribute to the development andunderstanding of how classroom activities support and foster student social engagement whichsupports learning gains and an inclusive environment.2 Background2.1 Social EngagementStudent engagement with a college course can come in many forms and occur inside and outsideof the classroom. The classroom experience can range from entirely composed of lectures to thosehaving only interactive activities. Students may additionally attend laboratory, recitation, orcomparable sessions. Students may engage in a multitude of ways with class material outside ofthe classroom to include working in groups
Paper ID #27198Project-Based Active Learning Techniques Enhance Computer ProgrammingAcademic and Career Self-Efficacy of Undergraduate Biomedical Engineer-ing StudentsMr. S. Cyrus Rezvanifar, University of Akron S. Cyrus Rezvanifar is a Ph.D. student in Biomedical Engineering at The University of Akron. He has also served as a research assistant in Cleveland Clinic Akron General since 2016, where he conducts research on biomechanics of human knee joint and patellar instability. In 2016, he received a doctoral teaching fellowship from the College of Engineering at The University of Akron. Through this teaching program, he
Paper ID #21582Impact of Classroom Surgical Procedure Demonstration Using Artificial Bonein Orthopedic Implant DesignDr. Won Joo, Robert Morris University Won Joo is an Assistant Professor in engineering department at Robert Morris University, Pitt. Pa. He received his Ph.D. in Mechanical Engineering from Case Western Reserve University, and joined RMU in 2013 after 8 years of R&D experience in medical device industry. He has been teaching and researching in mechanics of materials and biological tissue/joint biomechanics. c American Society for Engineering Education, 2018 Impact of Classroom
alongside key concepts and practicesin the informal teaching and learning space.Implementation StrategiesThis case study is based on an informal education program which provides students with anopportunity to dive into hands-on engineering. This program also serves as a laboratory settingfor teacher-researchers to pilot new programming that they would not have the opportunity to trywithin the formal classroom. The program serves approximately 100 diverse 6th and 8th gradegirls in an engineering summer program. The diversity of the educators may add to theinnovation with formal educators including a secondary math teacher, K-5 STEAM specialists,an inclusion coordinator, a tech integration specialist, secondary science educationundergraduates
Paper ID #27030Experience-Based Learning: Global Engineering Culture and SocietyDr. Julio Urbina, Pennsylvania State University, University Park JULIO V. URBINA, Ph.D is an Associate Professor in the School of Electrical Engineering and Com- puter Science at Penn State. His educational research interests include effective teaching techniques for enhancing engineering education, global engineering and international perspectives, thinking and working in multi-, inter-, and transdisciplinary ways, cyberlearning and cyber-environments, service and experien- tial learning, teaming and collaborative learning.Prof. Jose F. Oliden
rates as well as supporting faculty with development of effective learning and teaching pedagogies.Mr. James Blake Gegenheimer James Gegenheimer is an MSME Candidate in Mechanical Engineering at LSU. When graduated, James will commission as a Second Lieutenant in the United States Air Force. He will be stationed at Hill Air Force Base in Salt Lake City, Utah. He plans to pursue a Ph.D. through the Air Force and work with the Air Force Weapons Research Laboratory. James is currently a Supplemental Instructor at LSU for Thermodynamics where he has served since 2013. He has worked to improve how STEM college students learn through the use of active learning. c American Society for
proceedings). Dr. Lin’s teaching interests lies in Mechanical Design, Solid Mechanics, and Dynamics. Currently, he is advising 4 Ph.D. students, 3 Master students, and 2 undergraduate students. Since 2011, 5 Master students graduated from his group. He was awarded the Best Paper at SAMPE 2008 fall technical conference, Honorable Mentioned Best Student Paper at SMASIS 2009 fall conference and ASME Best Paper in Materials of 2010 at SPIE Smart Materials/NDE 2011 conference. He is a member of ASME, SPIE, SAMPE and AIAA. ©American Society for Engineering Education, 2016 EVALUATING INDIVIDUAL LEARNING EFFECTIVENESS ON PROJECT-BASED LEARNING METHODOLOGY BY COMPARING TEAM-BASED AND
NDSU in 1987. He has been a member of the technical staff of Bell Telephone Laboratories, has served on the faculty of the University of Idaho, and at North Dakota State University, has consulted with Michigan Technological University and Lawrence Livermore National Labs; NDSU Center for Nanoscale Science and Engineering (CNSE); Sverdrup Technology (Eglin Air Force Base); Otter Tail Power Company; and the Naval Undersea Warfare Center, New London, CT. Dr. Nelson has been working (teaching and research) in the area of applied electromagnetics, including antennas, transmission lines, microwave engineering, EMI/EMC since 1981. c American Society for Engineering Education, 2016Experiences in
Institute of Science, Israel MSc Applied Math- ematics, 1985, Weizmann Institute of Science, Israel BSc Computer Science and Mathematics, 1982, Ben-Gurion University, Israel Interests Big Data Applications in Telecommunications Software Defined Networks – operations, man- agement and orchestration Artificial Intelligence – expert systems, intelligent agents, reinforcement learn- ing Self-Organizing Networks Number TheoryProf. Richard Cliver, Rochester Institute of Technology (CAST) Richard C. Cliver is an Associate Professor in the department of Electrical, Computer and Telecommu- nications Engineering Technology at RIT where he teaches a wide variety of courses both analog and digital, from the freshman to senior
Paper ID #10137Work in Progress: Developing Senior Experimental Design Course ProjectsInvolving the Use of a SmartphoneDr. Denise H Bauer, University of Idaho, Moscow Dr. Denise Bauer is an Assistant Professor in the Department of Mechanical Engineering at the University of Idaho. Dr. Bauer teaches both first-year and senior-level courses and is developing a new engineering course for first-year students that are under-prepared in math. Her main research area is Human Factors and Ergonomics where she is currently working on a pedestrian guidance system for the visually impaired. She is also working on several initiatives to
engineering programs, mixed methods research, and innovative approaches to teaching. Currently, she teaches within the first-year engineering program at Ohio State while maintaining an active engineering education research program.Dr. Krista M. Kecskemety, Ohio State University Krista Kecskemety is a Senior Lecturer in the Engineering Education Innovation Center at The Ohio State University. Krista received her B.S. in Aerospace Engineering at The Ohio State University in 2006 and received her M.S. from Ohio State in 2007. In 2012, Krista completed her Ph.D. in Aerospace Engineering at Ohio State. Her engineering education research interests include investigating first-year engineering student experiences, faculty
. Khaled Sobhan is a Professor of Civil Engineering at Florida Atlantic University. He is the Princi- pal Investigtor of the NSF RIGEE Project titled ”Exploring the disconnect between Self Determination Theory and the Engineering Classroom Environment.” He is the recipient of a number of teaching awards including 2009 Excellence in Graduate Mentoring Award, and 2006/2007 Award for Excellence and In- novation in Undergraduate Teaching, both at Florida Atlantic University. He has been rigorously involved with the Engineers Scholars Program for gifted high-School students taking dual enrollment credit courses at FAU. Dr. Sobhan received his MS degree from The Johns Hopkins University, and his Ph.D. degree from Northwestern
: laboratories woven throughout finaltwo years of most programs. The students would also benefit from taking basic engineeringcourses, i.e. math and science courses at the local institution closer to their “homes” with arelative small class size. A benefit to the mainstream institution would be that they gaindiversity in their graduating classes without proportional expansion of general student recruitingactivities. It is also seen that there might be some nontrivial benefit to participating faculty atmainstream institutions with respect to experiencing effective teaching approaches for diversestudents. Both groups of academics recognize the opportunity for development of infrastructurein the local tribal communities in response to some serious needs of
Aerospace Projects primarily at the Boeing Company. Career accomplishments include creating computerized sys- tems for electronic design and testing, rocket orbital placement of telecommunications satellites, and the design and building of multi-megawatt wind turbines. His career has progressed from technical design engineer to large-corporation executive manager. His labor relations experience includes Vice President of the United States’ largest professional/technical bargaining unit recognized by the Labor Relations Board. Don’s academic career involves educational assignments which include teaching and developing several engineering and business related courses as a University Adjunct Professor, an assignment as a
present.First Phase (1924 - 1940) In the first phase, there was a Department or Faculty of Engineering under theUniversity of Rangoon, which gave civil engineering, mechanical engineering andelectrical engineering courses at College of Engineering which later became RIT.Second Phase (1946 – 1961) The system at that time was in such a way that the students had to take commoncourses in the first 2 years and branched out into different disciplines of choice, startingfrom the 3rd year. The total contact hours of learning for engineering students were about30 hours per week and 6 years of undergraduate course after matriculation. The mediumof teaching was mainly English. In addition to the lectures, laboratory work and drawing,all the students had
First Year Engineering Students really need: A Study and Survey, Bala Maheswaran, ASEE Conference Proceeding, AC 2012-3390. 10. Impact of a Design Project on Engineering Physics: Does motor design project motivate students? Bala Maheswaran, ASEE Conference Proceeding, AC 2013. 11. A New Teaching Approach for Ancient Engineering Physics: Master Physics via Mastering Physics! A Study and Survey, Bala Maheswaran, ASEE Conference Proceeding, AC 2014. 12. Physical and Virtual Laboratories in Science and Engineering Education, Ton de Jong, Marcia C. Linn, and Zacharias C. Zacharia, Science, Vol. 340, Issue 6130, 2013 13. Developing Interactive Teaching Strategies for Electrical Engineering Faculty, Margret
years of industrial Research and Development experience at IBM Microelectronics, DuPont and Siemens. He has also conducted research at Oak Ridge National Laboratory, NASA, Naval Research Lab and Army Research Lab. Presently, he is a tenured Associate Professor in the Engineering Department at Virginia State University. c American Society for Engineering Education, 2018 Integration of Agriculture Research into the Manufacturing Design and Implementation ProjectsAbstractVirginia State University (VSU) is an 1890 Land-Grant institution. In the fiscal year (FY) 2015, aUSDA project jointly submitted by College of Agriculture and College of Engineering &Technology was funded
Austin, and an M.S. in Computer Science from FIU.Prof. Shahin Vassigh, Florida International University Shahin Vassigh is a Professor and Co-Director of Structural and Environmental Technologies Laboratory in the School of Architecture at Florida International University where she teaches building technology, structures, and design studios. Vassigh’s research is focused on improving building technology and sus- tainable building design education by developing alternative teaching pedagogies. She is the recipient of several federal grants for improving structures and technology education for developing alternative teaching methods and learning environments that utilize the state of the art computing technologies. Vas
Paper ID #25644Affordable learning solutions and interactive content in engineering mechan-icsDr. Nicolas Ali Libre, Missouri University of Science & Technology Nicolas Ali Libre, PhD, is an assistant teaching professor of Civil Engineering in Missouri University of Science and Technology.He received his B.S. (2001), M.S. (2003) and Ph.D. (2009) in civil engineering with emphasis in structural engineering, all from the University of Tehran, Iran. His research interests and experience are in the field of computational mechanics, applied mathematics and cement-based composite materials. During his post-doc in the
Paper ID #25892Architectural Engineering Starts with Design from Day 1Mr. Richard Hanson Mui, University of WaterlooMs. Soo Jung Woo, University of WaterlooMr. Spencer Arbuckle, University of WaterlooDr. Rania Al-Hammoud P.Eng., University of Waterloo Dr. Al-Hammoud is a Faculty lecturer (Graduate Attributes) in the department of civil and environmental engineering at the University of Waterloo. Dr. Al-Hammoud has a passion for teaching where she con- tinuously seeks new technologies to involve students in their learning process. She is actively involved in the Ideas Clinic, a major experiential learning initiative at the
Paper ID #31462Impacting Students from Economically Disadvantaged Groups in anEngineering Career PathwayDr. Manuel Jimenez, University of Puerto Rico, Mayaguez Campus Dr. Jimenez is a professor at the Electrical and Computer Engineering Department in the University of Puerto Rico Mayaguez (UPRM). He earned his B.S from Universidad Autonoma de Santo Domingo, Do- minican Republic in 1986, M.S. from Univ. of Puerto Rico Mayaguez in 1991, and Ph.D. from Michigan State University in 1999. His current teaching and research interests include design, characterization, and rapid prototyping of information processing systems
, practicalreal-world engineering training for their students and graduates. This is usually achieved throughstructured laboratory-based courses and project-based learning courses throughout theircurriculum. In the EET program at Kennesaw State University, the Capstone Design courseexperience was offered through a menu of project-based senior design courses that students gotto choose from based on their specific electrical areas of interest. This served the program wellfor several years but did not always offer the students a uniform design experience as thatdepended on the instructor(s) teaching those classes in a given semester. As a result, the EETfaculty concluded that in order to offer a more uniform experience to each cohort of students, itwas best
skills learned from this project were invaluable, as research, design,trial and error, as well as technical writing are all important experiences within engineering andenergyReferences:1. Clean Revolution, Robert F. Service, Science, Vol. 350, Issue 6264, 20152. Electricity without Carbon, Quirin Schiermeier, Jeff Tollefson, Tony Scully, Alexandra Witze & Oliver Morton, Nature, Vol 454, 816–823 (2008)3. The Science of Teaching Science, M. Mitchell Waldrop, Nature, Vol 523, 272-274 (2015)4. Physical and Virtual Laboratories in Science and Engineering Education, Ton de Jong, Marcia C. Linn, and Zacharias C. Zacharia, Science, Vol. 340, Issue 6130, 20135. Renewable Energy Sources - Energy Explained, Your Guide To Understanding Energy
-Engineering Department. He assisted with writing the AMI accreditation report to the HLC, wrote several successful grants, and managed CCCC’s Advanced Manufacturing Curricu- lum and Pre-Engineering Educational Consortium. In addition the Advanced Manufacturing initiative at CCCC has hired two undergraduates to run the 3-D/Scanner Laboratory. The aforementioned gives the students hands on training in a STEM related field. Mr. Haefner has 13 years’ experience teaching college STEM courses. He has taught construction man- agement at Westwood College in Chicago; mathematics at Mid-Michigan Community College and Cor- nerstone University in Grand Rapids, MI. Mr. Haefner has taught algebra, engineering statics, several HVAC
Paper ID #29347Strategies for flipped classroom video development: educating generationZ engineering studentsDr. Michelle Alvarado, University of Florida Dr. Michelle Alvarado is an Assistant Professor at the University of Florida. She obtained her Ph.D. and M.Eng. in Industrial Engineering from Texas A&M University and her B.S. in Industrial Engineering from the University of Alabama. Dr. Alvarado is the Co-Founder and Co-Director of the HEALTH- Engine Laboratory. The aim of her engineering education research is to develop new methods and best practices of flipped classroom video development for simulation and
Republic in 1986, M.S. from Univ. of Puerto Rico Mayaguez in 1991, and Ph.D. from Michigan State University in 1999. His current teaching and research interests include design, characterization, and rapid prototyping of information processing systems, embedded cyber-physical systems, and engineering education. He is the lead author of the textbook Introduction to Embedded Systems: Using Microcon- trollers and the MSP430 (Springer 2014). From 2013 to 2018 served as Associate Dean of engineering at UPRM. He currently directs the Engineering PEARLS program at UPRM, a College-wide NSF funded initiative, and coordinates the Rapid Systems Prototyping and the Electronic Testing and Characterization Laboratories at UPRM. He is
-transformation engineering education philosophy from Teaching to Learning tool and from Faculty to Self - education based on laboratory and practice - provision of advanced design tools of -engineering design and intelligent and automation system analysis, CAD/CAM - emphasis on teaching of practical Emphasizing system -mechatroniocs 1,2 engineering tools of CAD/CAM,3 design of machine -fluid/pneumatic Power engineering analysis
AC 2007-2879: USING THE SAE COLLEGIATE DESIGN SERIES TO PROVIDERESEARCH OPPORTUNITIES FOR UNDERGRADUATESGregory Davis, Kettering University DR. GREGORY W. DAVIS is a Professor of Mechanical Engineering at Kettering University, formerly known as GMI Engineering & Management Institute. Acting in this capacity, he teaches courses in the Automotive and Thermal Science disciplines. He also serves a Director of the Advanced Engine Research Laboratory, where he conducts research in alternative fuels and engines. Currently, Greg serves as co-faculty advisor for the world's largest Student Chapter of the Society of Automotive Engineers (SAE) and the Clean Snowmobile Challenge Project. Greg is