affective outcomes wereinvestigated with the goal of predicting and improving engagement and connection tocommunity across a diverse range of institutions, students, teaching styles, and faculty. In theportion of the study discussed here, qualitative analysis of focus group data was used to identifydifferences in student perceptions of formal (in class) and informal (out of class) faculty supportby class size and institution type at five different institutions in engineering and computerscience majors.Research SettingThe five participating institutions in this study, described according to their Carnegieclassifications34, and their key characteristics as drawn from institutional data and missionstatements are as follows: HBCU (Masters S): A
keeping pace and routines, such as arriving on time. Finally, our study echoesprevious research in engineering education in that self-efficacy can be altered (negativelyand positively) in relatively short periods of time, which has an important effect onacademic achievement. References1. Meyer, M., & Marx, S. (2014). Engineering dropouts: A qualitative examination of why undergraduates leave engineering. Journal of Engineering Education, 103(4), 525– 548.2. Pascarella, E. T. & Terenzini, P. T. (2005). How college affects students, volume 2. San Francisco, CA: Jossey-Bass.3. DesJardins, S. L., Ahlburg, D. A., & McCall, B. P. (1999). An event history model of student departure
Testing of Hypothesis step.References1. Carper, K. L. (Ed.). (2000). Forensic engineering. CRC Press.2. Delatte, N. J., & Rens, K. L. (2002). Forensics and case studies in civil engineering education: State of the art. Journal of Performance of Constructed Facilities, 16(3), 98-109.3. Schweitzer, N. J., & Saks, M. J. (2007). The CSI effect: Popular fiction about forensic science affects the public's expectations about real forensic science.Jurimetrics, 357-364.4. Chen, S. E., & Janardhanam, R. (2013). Forensic engineering education reform. Proceedings of the ICE- Forensic Engineering, 166(1), 9-16.5. The American Heritage® Dictionary of the English Language, Fourth Edition Copyright © 2004, 2000 by Houghton Mifflin
. Cynthia C. Fry, Baylor University Cynthia C. Fry is a Senior Lecturer of Computer Science and the Director of the Computer Science Fel- lows program at Baylor University. She teaches a wide variety of engineering and computer science courses, deploys a series of faculty development seminars focused on Curiosity, Connections, and Cre- ating Value, and works collaboratively and remotely with a series of colleagues on the development of EML-based courses. She is a KEEN Fellow.Dr. Kenneth W. Van Treuren, Baylor University Ken Van Treuren is an Associate Professor in the Department of Engineering at Baylor University. He received his B. S. in Aeronautical Engineering from the USAF Academy in Colorado Springs, Colorado
should befocused on the specific subjects instead of providing too much computational support. Thus,further research is necessary to identify what are the differences between different type ofchallenges and the level of scaffolding in student understanding and student performance intransfer tasks.AcknowledgementsThis research was supported in part by the U.S. National Science Foundation under the awards#EEC1329262 and #EEC1449238. Page 26.744.10References1 Turner, P., Petzold, L., Shiflet, A., Vakalis, I., Jordan, K., & St. John, S. Undergraduate computational science and engineering education. Society for Industrial and Applied
-stateproblem (Fig. 1) was adopted from an exercise at the end of Chapter 4 (“Two-Dimensional,Steady-State Conduction”) of Incropera et al.’s textbook25, while the transient, semi-infinitemedium problem (Fig. 2) was adopted from an exercise at the end of Chapter 4 (“Transient HeatConduction”) of Çengel and Ghajar’s textbook13.After the introduction of the problem statement and summaries of the educational objectives andrelevant FE and course theory, each ALM includes the following solutions steps (these steps areapplicable to thermal ALM’s using SolidWorks and SolidWorks Simulation, but similar steps arefollowed for ALM’s that use other software packages): 1. Using SolidWorks to create a 3-D model. The steps required to draw the model in
%), African American (3.8%), Hispanic/Latino American (9.2%). Twenty-six percent ofthe sample identified as international students, and a similar percentage (24.2%) identifiedEnglish as their second language.Protocol To evaluate the effectiveness of the new interpersonal communication focused content, arandomized controlled trial was conducted, as it provides the strongest evidence for evaluatingthe effectiveness of an intervention49 An essential component of randomized controlled trials isthat participants are randomly split between treatment and control groups. Control group(s) arenot exposed to the intervention, while treatment group(s) are. Following treatment groupexposure, differentiations between the treatment and control groups are
examination data.References[1] Garrison, D., & Vaughan, N. (2008). Blended Learning in Higher Education: Framework, Principles, and Guidelines. San Francisco, CA: John Wiley & Sons, Inc., 4-8.[2] Bourne, J., Harris, D., & Mayadas, F. (2005). Online Engineering Education: Learning Anywhere, Anytime. Journal of Engineering Education, 94(1), 131-146.[3] Dziuban, C., Hartman, J., Juge, F., Moskal, P., & Sorg, S. (2006). Blended Learning Enters the Mainstream, In C. Bonk, & C. Graham (Eds.), The Handbook of Blended Learning: Global Perspectives, Local Designs (195-206), San Francisco, CA: John Wiley & Sons, Inc.[4] Twigg, C. (2003). Improving Learning and Reducing Costs: New Models for Online Learning. Educause
a) The weight of the new chassis is still heavier than the original fuel cell car, which reduces run time. b) The fuel cell car`s maneuverability is limited by the size of the chassis and the type and number of sensors. c) Running time is still short (2 minute approximately) so it would be beneficial to increase this. d) New fuel cell car requires twice as much fuel in order to maintain original run times.The case activities, course concepts and report due dates were planned for five stages,summarized in Table 2. Ultimately, the students recommended design improvements for the nextversion of the chassis based on the case activity results. Students worked in teams of five andcompleted
social development into engineering studies8 or using PBL inleadership development9.On the other hand, general frameworks have been used for the universities to improve theirprograms and operations. The main assumption is that the same framework used by an industryis adjustable for all kind of organization, including higher education institutions. An example isthe Baldrige Education Criteria for Performance Excellence explored and adapted for some USuniversities in the 90’s. The Criteria provides codified values and concepts of performanceexcellence from industry to education. Even though models developed outside education Page 26.86.3environments
- Page 26.108.2income students, and/or students who start college significantly later than 18 years of age are atbest underrepresented, and at worst socially marginalized in many engineering classrooms.Furthermore, McIntosh explains that the myth of monoculture assumes that there is a single“normal” experience8. Recognizing and acknowledging that a “monoculture” is embeddeddeeply in the engineering education system may not be easy for those of us who are engineeringeducators and researchers. McIntosh points out that such a monoculture mirrors that of the USsocial system, not merely by what she calls “active forms” of interlocking oppressions, but moredeeply—in embedded forms—forms which “member[s] of the dominant group are taught not tosee”9
launchesstudents into a successful future by promoting academic engagement, encouraging success, andimproving the overall student learning satisfaction.References1. Advisory Committee to the National Science Foundation, Directorate for Education and Human Resources, “Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (SME&T)”, NSF 96-139. Page 26.120.132. Cudney, E., Corns, S., Grasman, S., Gent, S., and Farris, J., “Enhancing Undergraduate Engineering Education of Lean Methods using Simulation Learning Modules within a Virtual Environment”, ASEE Annual Conference &
success. 4. Flipped classroom strategies that involve providing instructor feedback to students on an individualized basis require significant resources. Scheduling and proper classroom setup can pose additional challenges. Institutions must adapt to accommodate the changing educational needs.References 1. Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 201319030. 2. Prince, M. (2004). Does active learning work? A review of the research. Journal of engineering education, 93(3), 223-231. 3. Tucker, B
. 107th ASEE Annual Conference & Exposition, St. Louis, Missouri.14. System Dynamics Society (2015) www.systemdynamics.org15. Forrester, J.W. (1961) Industrial Dynamics. Cambridge, MA: The MIT Press. Reprinted by Pegasus Communications, Waltham, MA.16. Forrester, J.W. (1969) Urban Dynamics. Cambridge, MA: The MIT Press. Reprinted by Pegasus Communications, Waltham, MA.17. Aström, K.J., and Murray, R.M. (2008) Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press.18. Palm, W. J. (2014) System dynamics. New York, NY, McGraw-Hill Science.19. Zelinka, I., Vaclav, S. and Ajith, A. (2013) Handbook of Optimization: From Classical to Modern Approach. Berlin: Springer
images, it also tells you these theories behind” (Student CE_Se_03). “We use a lot of quantum in doing…like bonding… how the orbital form into bonds… the models of those help me … in pulling out … this is how a s orbital looks like, this is how a s orbital looks like…” (Student CE_Se_01).Integrated with interactive capabilities, students could manipulate and explore a givenphenomenon and understand the abstract concept, for example, one student said, “you could drag electrons like different levels and achieve like different colors and say wow that’s cool why did that happen. And you kind of, work through that in your head” (Student P_Ju_01). To off-load complicated mathematical calculations. Quantum mechanics
author(s) and do not necessarily reflect the views of the NationalScience Foundation.Bibliography1. Leaning, J. & Guha-Sapir, D. Natural Disasters, Armed Conflict, and Public Health. N. Engl. J. Med. 369, 1836–1842 (2013).2. Garriga, E. & Melé, D. Corporate social responsibility theories: mapping the territory. J. Bus. Ethics 53, 51–71 (2004).3. National Society of Professional Engineers. NSPE Code of Ethics for Engineers. (2007).4. Herkert, J. R. in Social, ethical, and policy implications of engineering: selected readings 45–73 (IEEE Press, 2000).5. Hess, J. L. et al. Empathy and caring as conceptualized inside and outside of engineering: Extensive literature review and faculty focus group analyses. in
. 20, no. 3, pp. 305-312, 2004.[8] C. Dym, A. Agogino and O. Eris, "Engineering design thinking, teaching, and learning," Journal of Page 26.1100.15 Engineering Education, no. January, 2005.[9] N. Hotaling, B. B. Fasse, L. F. Bost, C. D. Hermann and C. R. Forest, "A Quantitative Analysis of the Effects of a Multidisciplinary Engineering Capstone Design Course," Journal of Engineering Education, vol. 101, no. 4, pp. 630-656, 2012.[10] J. L. Zayas, J. S. Lamancusa, A. L. Soyster, L. Morell and J. Jorgensen, "The Learning Factory: Industry- Partnered Active Learning," Journal of Engineering Education, no. January 2008, pp
Paper ID #13586Qualitative Analysis of Boundary Spanning Implications within Interviews ofEngagement StakeholdersDr. David A. Delaine, Universidade de S˜ao Paulo and IFEES David A. Delaine has a Ph.D. in electrical engineering from Drexel University, in Philadelphia, USA. He currently serves as an executive member of the International Federation of Engineering Education Societies (IFEES), as Vice President for Student Engagement, Diversity, and Inclusion. IFEES aims to strengthen engineering education practices around the world. He has recently completed his tenure as a Fulbright Scholar and is currently performing
, Pages Textbook Title Author(s) Edition Chapter Analyzed Analyzed rd Fluid Mechanics: Cengel, Y.A., & 2014, 3 Ed. 5. Bernoulli and 230-242 Fundamentals and Cimbala, J. M. Energy Equations Applications Fundamentals of Munson, B.R., 2013, 7th Ed. 3. Elementary 141-156 Fluid Mechanics Okiishi, T. H., Fluid Dynamics – Huebsch, W.W. & The Bernoulli Rothmayer, A.P. Equation
. Page 26.1404.125. References[1] Assessment and Institutional Research. (2010). CUNY Student Experience Survey. New York City College of Technology, CUNY.[2] Barnett, S. & Ceci, S (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612-637.[3] Bateman, C. (Ed.). (2007). Game writing: Narrative skills for videogames. Boston: Charles River Media.[4] Benander, R., & Lightner, R. (2005). Promoting transfer of learning: Connecting general education courses. The Journal of General Education, 54 (3), 199-208.[5] Brooks, R. E. (1977). Towards a theory of the cognitive processes in computer programming. International Journal of Man-Machine Studies, 9, 737-751.[6] Cabo, C
experiences support science career decisions and active learning.” CBE Life Sciences Education 6: 297-306.3. Russell, S. H., M.P. Hancock, and J. McCullough. (2007 ). “The pipeline. Benefits of undergraduate research experiences.” Science 316(5824): 548-9.4. Kinkel, D. H. and S. E. Henke. (2006). “Impact of undergraduate research on academic performance, educational planning, and career development.” Journal of Natural Resources and Life Sciences Education 35: 194-201.5. Lanza, J. and G. C. Smith. (1988). Undergraduate research: A little experience goes a long way. J. Coll. Sci Teach. 18:118-1206. Hunter, A-B., S. L. Laursen, and E. Seymour. (2007). “Becoming a scientist: The role of undergraduate research in students
the assessment of that academy.References 1. Kumar, S., & Hsiao, J. K. (2007). Engineers learn “soft skills the hard way”: Planting a seed of leadership in engineering classes. Leadership and Management in Engineering, 7(1), 18-23. 2. Galloway, P. D. (2008). The 21st Century Engineer: A Proposal for Engineering Education Reform, ASCE Press, Virginia 3. Creed, C. J., Suuberg
completion. The twotools were tested in various engineering courses and mixed results were found: While both toolswere adoptable, only the exam wrapper appeared to be efficacious in this study.Introduction Metacognition, which has as its simplest definition thinking about one’s thinking, is themodern term used to capture the processes that learners use to reflect upon and take actions toimprove their learning. The psychologist John Flavell1 introduced the term in the 1970’s whileadvancing research on the topic, but ideas about the usefulness of reflection in improvinglearning began much earlier, starting with John Dewey2. Both Piaget and Vygotsky – bothrecognized widely for their theories in education – wrote of the role of metacognition in
persistentstructure of the education system even though we were explicitly attempting to behavedifferently. As we, the faculty and students, began to recognize the structure we could let go ofthe problem and the solutions. However, this “letting go” had to occur repeatedly (almostweekly) as the issue continued to be bothersome to many of us.What are the cultural beliefs, values, and paradigms that are causing the problems of intransigentSTEM pedagogies that result in STEM cultures that are exclusive? We first note that “S” refersto the physical, or equivalently, the natural sciences; it excludes all other organized ways ofthinking, or “sciences.” Implicitly, natural sciences are prioritized over other “sciences.”The natural sciences derive knowledge through
tacit.Explicit knowledge is codified and captured in archives and databases in discrete words ornumbers. Tacit knowledge, on the other hand, provides the context for developing andunderstanding explicit knowledge [7]. Tacit knowledge is not codified and is, therefore,harder to communicate. The development of tacit knowledge is a continuous activity betweenindividuals sharing experiences for mutual understanding [6].Knowledge needs to be continuously created in order for it to be continuously shared.Nonaka [6] proposes that knowledge is created through the conversion between tacit andexplicit knowledge via four modes, referred to by the acronym SECI, in a continuous cycle:1) socialization (S) is creating tacit knowledge from other tacit knowledge through
expertise in biomedical engineering students.In Proceedings of the 2001 American Society for Engineering Education Annual Conference, Albuquerque, NM[2] Brophy. S., Hodge, L. & Bransford, J. (2004, October). Work in progress – Adaptive expertise: Beyond applyacademic knowledge. In the ASEE/IEEE Frontiers in Education Conference.[3] Crawford, V. M., Schlager, M., Toyama, Y., Riel, M., & Vahey, P. (2005, April). Characterizing adaptive expertise inscience teaching. In annual meeting of the American Educational Research Association, Montreal, Quebec, Canada.[4] De Arment, S. T., Reed, E., & Wetzel, A. P. (2013). Promoting Adaptive Expertise A Conceptual Framework forSpecial Educator Preparation. Teacher Education and Special Education: The
the course. Future data collection will also provide the opportunity to assess thecourse’s long-term viability and effectiveness as either a stand-alone course within thecurriculum or as an incubator that can be integrated into existing courses.References1. Streveler, R. A., Smith, K. A. & Pilotte, M. Aligning course content, assessment, and delivery: Creating a context for outcome-based education. K. Mohd Yusof, S. Mohammad, N. Ahmad Azli, M. Noor Hassan, A. Kosnin S. K, Syed Yusof (Eds.), Outcome-Based Educ. Eng. Curric. Eval. Assess. Accreditation. Hershey, Pennsylvania IGI Glob. (2012).2. Wiggins, G. P. & McTighe, J. Understanding by design. (Ascd, 2005).3. Dewey, J. Education and experience. (1938).4
.2.2.1 Development Academic Partner and ActivitiesDistinguished faculty members from the Milwaukee School of Engineering and Virginia StateUniversity (a HBCU partner) have supported this project from the very beginning asDevelopment Academic Partners. Mutual interest is instrumental in this longstandingpartnership. The role of the academic development partner is well defined and involves thefollowing: Identifying at least one local industry partner involved in software development activities Working with assigned focus groups to critically review current course Developing six hours of course modules to address identified gaps in a content area familiar to the university program and its local industry partner(s
creativity and innovation. The instructordecides what should be learned based on their own paradigm of what a good engineer shouldknow, but this does not take into account the interests of the student or the ever-changing needsof the world. The underlying assumption of this predominant system is that human beings are notnatural learners and must be forced to learn through external behavioral motivations such asreward and punishment.A look through the literature shows that in the 1990’s, before No Child Left Behind (NCLB),there was much talk about grading and assessment, mostly related to standards-based grading.The discussion faded from view as the consequences of NCLB focused on the detrimental effectsof standardized testing. During these early
for Applied Research. Retrieved from http://www.educause.edu/library/resources/ecar-study-undergraduate-students-and-information-technology-2012[3] Flowers, L., Pascarella, E. T., & Pierson, C. T. (2000). Information technology use and cognitive outcomes in thefirst year of college. Journal of Higher Education, 637-667.[4] Kuh, G. D., & Hu, S. (2001). The relationships between computer and information technology use, selectedlearning and personal development outcomes, and other college experiences. Journal of College StudentDevelopment, 42(3), 217-232.[5] Kvavik, R. B., Caruso, J. B., & Morgan, G. (2004). ECAR study of students and information technology 2004:Convenience, connection, control, and learning. Boulder, CO: EDUCAUSE