Asee peer logo

An Atomic Bonding Module For Materials Engineering That Elicits And Addresses Misconceptions With Concept In Context Multimodal Activities, Worksheets, And Assessments

Download Paper |


2010 Annual Conference & Exposition


Louisville, Kentucky

Publication Date

June 20, 2010

Start Date

June 20, 2010

End Date

June 23, 2010



Conference Session

NSF Grantees Poster Session

Page Count


Page Numbers

15.143.1 - 15.143.21



Permanent URL

Download Count


Request a correction

Paper Authors

author page

Stephen Krause Arizona State University


Jacquelyn Kelly Arizona State University

visit author page

Jacquelyn Kelly, Arizona State University
Jacquelyn Kelley is a M.S. student in the School of Materials in the Fulton School of Engineering at Arizona State University. Her BS degree is in Physics and Chemistry Education. Her principle research areas are inquiry-based learning and development and assessment of inquiry-based modules in materials science and engineering. She teaches physics, chemistry and mathematics in a local arts high school.

visit author page


Dale Baker Arizona State University

visit author page

Dale Baker, Arizona State University
Dale R. Baker is a Professor of Science Education in the Department of Curriculum and Instruction at ASU and is the Co-Editor of The Journal of Research in Science Teaching. She teaches courses in science curricula, teaching and learning, and assessment courses with an emphasis on constructivist theory and issues of equity. Her research focuses on issues of gender, science, and science teaching. She has won two awards for her research in these areas. In this work she is responsible for developing assessments and overseeing data collection, analysis, and feedback to the project.

visit author page


Amaneh Tasooji Arizona State University

visit author page

Amaneh Tasooji, Arizona State University
Amaneh Tasooji is an Associate Research Professor in the School of Materials at ASU and has been teaching and developing new content for materials science and engineering classes and laboratories. She has developed new content and contextual teaching methods from here experience as a researcher and General Manager at Honeywell Inc. She is currently working to develop new assessments to reveal and address student misconceptions in introductory materials engineering classes.

visit author page

Download Paper |

NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

An Atomic Bonding Module for Materials Engineering that Elicits and Addresses Misconceptions with "Concept-in-Context" Multimodal Activities, Worksheets, Problems, and Assessments


For an introductory materials course, we address the research question, "How can misconceptions about atomic bonding in engineering materials be most effectively identified and addressed in order to develop engineering students’ ability of understand and apply structure- property relationships of atomic bonding to real-world engineering materials?" Misconceptions on atomic bonding have been well studied for science classes with a focus on materials in the natural world, which usually have ionic and/or covalent bonding. However, the goal of introductory engineering materials classes is to understand structure, processing, properties and performance relationships of materials used in the engineering design of components, devices, and systems. As such, exposure to important engineering materials in earlier science classes, such as metals and polymers, may have been limited. Thus, at the beginning of a materials course, it is important to determine students' prior knowledge and misconceptions on bonding concepts. To do so, a multimodal assessment was created to guide development of an atomic bonding module for the materials course. The pre-and-post module assessment elicited written and sketched descriptions about different bonding types, as well as the bonding types specifically found in metals, ceramics, and polymers. These assessments guided development of "Concept- in-Context" classroom clicker questions, concept eliciting activities, daily end-of-class student reflections, and concept-based homework assignments. It was found from earlier Materials Concept Inventory (MCI) pre-and-post course data, that there was limited understanding and little conceptual change for questions on metallic and van der Waals bonding. To address and repair students' faulty mental models on bonding, an atomic bonding module was created using coordinated concept-in-context multiple representations of content and activities. These included Concept-in-Context: 1) interactive, concept-based, mini-lecture power points that linked bonding concepts visually to context applications and related equations and graphs; 2) clicker questions for rapid feedback to students and instructor; 3) 2-D concept-sketching and 3-D concept modeling hands-on activities; 4) team-discussion, sort-and-match worksheets linking real-world items to bonding and properties and processing; 5) visual glossaries to foster spatial-visual conceptual definition and understanding; 5) open-ended, end-of-class reflection questions that queried student on their most interesting, muddiest, and takeaway points; and 6) homework with equation problems, graphing problems, sort-and-match worksheets and concept questions. Multiple assessments showed significant gains in conceptual knowledge and support of student learning. Details of results, analysis, conclusions and implications are presented and discussed in the full paper.


Misconception research on atomic bonding has been done primarily from a physical science perspective. Traditionally taught in chemistry, students learn the nature of atomic bonds and how they can be represented. However, student exposure is often limited to only covalent and ionic bonding. In a review of student bonding conceptions, Robinson1 found that students believed that

Krause, S., & Kelly, J., & Baker, D., & Tasooji, A. (2010, June), An Atomic Bonding Module For Materials Engineering That Elicits And Addresses Misconceptions With Concept In Context Multimodal Activities, Worksheets, And Assessments Paper presented at 2010 Annual Conference & Exposition, Louisville, Kentucky. 10.18260/1-2--16359

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2010 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015