Asee peer logo

Board 417: Understanding the Implementation of the STEM-ID Curricula in Middle School Engineering Classrooms (Fundamental)

Download Paper |

Conference

2024 ASEE Annual Conference & Exposition

Location

Portland, Oregon

Publication Date

June 23, 2024

Start Date

June 23, 2024

End Date

June 26, 2024

Conference Session

NSF Grantees Poster Session

Tagged Topics

Diversity and NSF Grantees Poster Session

Page Count

9

DOI

10.18260/1-2--47006

Permanent URL

https://peer.asee.org/47006

Download Count

100

Paper Authors

biography

Jessica D Gale Georgia Institute of Technology Orcid 16x16 orcid.org/0000-0002-7361-3612

visit author page

Dr. Jessica Gale is a Senior Research Scientist at Georgia Tech's Center for Education Integrating Science, Mathematics, and Computing (CEISMC). As a member of CEISMC’s Research and Evaluation Group, Dr. Gale’s recent work explores the development, implementation, and effectiveness of innovative STEM and STEAM curricula and programs. Dr. Gale’s research spans and often connects diverse subjects within K-12 education including: project-based learning, STEM integration, engineering education, curriculum development, and self-efficacy.

visit author page

biography

Meltem Alemdar Georgia Institute of Technology

visit author page

Dr. Meltem Alemdar is a Associate Director and Principal Research Scientist at Georgia Institute of Technology’s Center for Education Integrating Science, Mathematics, and Computing (CEISMC), Dr. Alemdar made significant contributions to the fields of STEM education. Her research focuses on improving K-12 STEM education through research on curriculum development, teacher professional development, and student learning in integrated STEM environments. Dr. Alemdar currently serves as PI and co-PI for research on various NSF funded projects that focuses on engineering education, teacher networks and STEM learning environments. Her expertise includes program evaluation, social network analysis, mixed methods, and advanced quantitative methods. Dr. Alemdar is passionate advocate for equitable and inclusive STEM education. She actively engages with educators, students, and communities to promote the importance of STEM disciplines and education research in preparing the next generation for the challenges of the future. She received her Ph.D. in Educational Policy, with a concentration in Research, Measurement, and Statistics, from Georgia State University.

visit author page

biography

Roxanne Moore Georgia Institute of Technology Orcid 16x16 orcid.org/0000-0003-0536-4957

visit author page

Roxanne Moore is currently a Research Engineer at Georgia Tech with appointments in the school of Mechanical Engineering and the Center for Education Integrating Mathematics, Science, and Computing (CEISMC). She is involved with engineering education inno

visit author page

Download Paper |

Abstract

Despite recent progress in the adoption of engineering at the K-12 level, the scarcity of high-quality engineering curricula remains a challenge. With support from a previous NSF grant, our research team iteratively developed the three-year middle school engineering curricula, STEM-ID. Through a series of contextualized challenges, the 18-week STEM-ID curricula incorporate foundational mathematics and science skills and practices and advanced manufacturing tools such as computer aided design (CAD) and 3D printing, while introducing engineering concepts like pneumatics, aeronautics, and robotics.

Our current project, supported by an NSF DRK-12 grant, seeks to examine the effectiveness of STEM-ID when implemented in diverse schools within a large school district in the southeastern United States. This paper will present early findings of the project’s implementation research conducted over two school years with a total of ten engineering teachers in nine schools. Guided by the Innovation Implementation framework (Century & Cassata, 2014), our implementation research triangulates observation, interview, and survey data to describe overall implementation of STEM-ID as well as implementation of six critical components of the curricula: engaging students in the engineering design process (EDP), math-science integration, collaborative group work, contextualized challenges, utilization of advanced manufacturing technology, and utilization of curriculum materials. Implementation data provide clear evidence that each of the critical components of STEM-ID were evident as the curricula were enacted in participating schools. Our data indicate strong implementation of four critical components (utilization of materials, math-science integration, collaborative group work, and contextualized challenges) across teachers. Engaging students in the EDP and advanced-manufacturing technology were implemented, to varying degrees, by all but two teachers. As expected, implementation of critical components mirrored overall implementation patterns, with teachers who completed more of the curricula tending to implement the critical components more fully than those who did not complete the curricula. In addition to tracking implementation of critical components, the project is also interested in understanding contextual factors that influence enactment of the curricula, including characteristics of the STEM-ID curricula, teachers, and organizations (school and district). Interview and observation data suggest a number of teacher characteristics that may account for variations in implementation including teachers’ organization and time management skills, self-efficacy, and pedagogical content knowledge (PCK). Notably, prior teaching experience did not consistently translate into higher completion rates, emphasizing the need for targeted support regardless of teachers' backgrounds. This research contributes valuable insights into the challenges and successes of implementing engineering curricula in diverse educational settings.

Gale, J. D., & Alemdar, M., & Moore, R. (2024, June), Board 417: Understanding the Implementation of the STEM-ID Curricula in Middle School Engineering Classrooms (Fundamental) Paper presented at 2024 ASEE Annual Conference & Exposition, Portland, Oregon. 10.18260/1-2--47006

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2024 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015