Tampa, Florida
June 15, 2019
June 15, 2019
June 19, 2019
NSF Grantees Poster Session
7
10.18260/1-2--32457
https://peer.asee.org/32457
455
Dr. Walter Lee is an assistant professor in the Department of Engineering Education and the assistant director for research in the Center for the Enhancement of Engineering Diversity (CEED), both at Virginia Tech. His research interests include co-curricular support, student success and retention, and diversity. Lee received his Ph.D in engineering education from Virginia Tech, his M.S. in industrial & systems engineering from Virginia Tech, and his B.S. in industrial engineering from Clemson University.
David B. Knight is an Associate Professor and Assistant Department Head of Graduate Programs in the Department of Engineering Education at Virginia Tech. He is also Director of International Engagement in Engineering Education, directs the Rising Sophomore Abroad Program, and is affiliate faculty with the Higher Education Program. His research tends to be at the macro-scale, focused on a systems-level perspective of how engineering education can become more effective, efficient, and inclusive, tends to be data-driven by leveraging large-scale institutional, state, or national data sets, and considers the intersection between policy and organizational contexts. He has B.S., M.S., and M.U.E.P. degrees from the University of Virginia and a Ph.D. in Higher Education from Pennsylvania State University.
Allison Godwin, Ph.D. is an Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. Her research earned her a National Science Foundation CAREER Award focused on characterizing latent diversity, which includes diverse attitudes, mindsets, and approaches to learning, to understand engineering students’ identity development. She has won several awards for her research including the 2016 American Society of Engineering Education Educational Research and Methods Division Best Paper Award and the 2018 Benjamin J. Dasher Best Paper Award for the IEEE Frontiers in Education Conference. She has also been recognized for the synergy of research and teaching as an invited participant of the 2016 National Academy of Engineering Frontiers of Engineering Education Symposium and the Purdue University 2018 recipient of School of Engineering Education Award for Excellence in Undergraduate Teaching and the 2018 College of Engineering Exceptional Early Career Teaching Award.
Janice L. Hall is a Ph.D. candidate in Engineering Education at Virginia Tech. She completed her M.S. and B.S. in Bio-engineering at Mississippi State University. Janice is a 2015 recipient of the National Science Foundation’s Graduate Research Fellowship and a 2010 Pat Tillman Scholar. Her research interest focuses on broadening participation of women and minorities in engineering and normalizing non-traditional career pathways. Janice is specifically interested in understanding how career concepts influence the career mobility strategies of African American Women in the Technology workforce.
Dina Verdín is a Ph.D. Candidate in Engineering Education and M.S. student in Industrial Engineering at Purdue University. She completed her B.S. in Industrial and Systems Engineering at San José State University. Dina is a 2016 recipient of the National Science Foundation’s Graduate Research Fellowship and an Honorable Mention for the Ford Foundation Fellowship Program. Her research interest focuses on changing the deficit base perspective of first-generation college students by providing asset-based approaches to understanding this population. Dina is interested in understanding how first-generation college students author their identities as engineers and negotiate their multiple identities in the current culture of engineering.
The purpose of the project is to identify how to measure various types of institutional support as it pertains to underrepresented and underserved populations in colleges of engineering and science. We are grounding this investigation in the Model of Co-Curricular Support, a conceptual framework that emphasizes the breadth of assistance currently used to support undergraduate students in engineering and science. The results from our study will help prioritize the elements of institutional support that should appear somewhere in a college’s suite of support efforts to improve engineering and science learning environments and design effective programs, activities, and services. Our poster will present: 1) an overview of the instrument development process; 2) evaluation of the prototype for face and content validity from students and experts; and 3) instrument revision and data collection to determine test validity and reliability across varied institutional contexts.
In evaluating the initial survey, we included multiple rounds of feedback from students and experts, receiving feedback from 46 participants (38 students, 8 administrators). We intentionally sampled for representation across engineering and science colleges; gender identity; race/ethnicity; international student status; and transfer student status. The instrument was deployed for the first time in Spring 2018 to the institutional project partners at three universities. It was completed by 722 students: 598 from University 1, 51 from University 2, and 123 from University 3.
We tested the construct validity of these responses using a minimum residuals exploratory factor analysis and correlation. A preliminary data analysis shows evidence of differences in perception on types of support college of engineering and college of science students experience. The findings of this preliminary analysis were used to revise the instrument further prior to the next round of testing. Our target sample for the next instrument deployment is 2,000 students, so we will survey ~13,000 students based on a 15% anticipated response rate. Following data collection, we will use confirmatory factor analysis to continue establishing construct validity and report on the stability of constructs emerging from our piloting on a new student sample(s). We will also investigate differences across these constructs by subpopulations of students.
Lee, W. C., & Knight, D. B., & Godwin, A., & Hall, J. L., & Verdin, D. (2019, June), Board 90: EAGER: Measuring Student Support in STEM: Insights from Year 2 Paper presented at 2019 ASEE Annual Conference & Exposition , Tampa, Florida. 10.18260/1-2--32457
ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2019 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015