Asee peer logo

Case study on engineering design intervention in physics laboratories

Download Paper |

Conference

2022 ASEE Annual Conference & Exposition

Location

Minneapolis, MN

Publication Date

August 23, 2022

Start Date

June 26, 2022

End Date

June 29, 2022

Conference Session

NSF Grantees Poster Session

Page Count

17

DOI

10.18260/1-2--42071

Permanent URL

https://peer.asee.org/42071

Download Count

355

Request a correction

Paper Authors

biography

Kevin Kaufman-Ortiz Purdue University at West Lafayette (COE)

visit author page

Kevin Jay Kaufman-Ortiz is from Hormigueros, Puerto Rico. He is an identical triplet, was raised with his brothers in the small town of Hormigueros. He picked up on interests in origami, music, engineering, and education throughout his life. With a bachelor's degree in industrial engineering and a certification to teach high school mathematics in Puerto Rico, Kevin has shaped his path to empower others in his learning process. He is currently a Ph.D. student at Purdue University studying Engineering Education. Social causes Kevin cares about are bringing more awareness about the diversity within the LGBTQ+ community in engineering, Belonging and deconstructing what Latinx actually means for communities like Puerto Rico.

visit author page

author page

Jason Morphew Purdue University at West Lafayette (PPI)

author page

N. Sanjay Rebello

author page

Carina Rebello Purdue University at West Lafayette (COE)

Download Paper |

Abstract

Problem-solving is a critical skill in the workplace, but recent college graduates are often deficient in problem-solving skills. Introductory STEM courses present engineering students with well-structured problems with single-path solutions that do not prepare students with the problem-solving skills they will need to solve complex problems within authentic engineering contexts. When presented with complex problems in authentic contexts, engineering students find it difficult to transfer the scientific knowledge learned in their STEM courses to solve these integrated and ill structured problems. By integrating physics laboratories with engineering design problems, students are taught to apply physics principles to solve ill-structured and complex engineering problems. The integration of engineering design processes to physics labs is meant to help students transfer physics learning to engineering problems, as well as to transfer the design skills learned in their engineering courses to the physics lab. We hypothesize this integration will help students become better problem solvers when they go out to industry after graduation. The purpose of this study is to examine how students transfer their understanding of physics concepts to solve ill-structured engineering problems by means of an engineering design project in a physics laboratory. We use a case-study methodology to examine two cases and analyze the cases using a lens of co-regulated learning and transfer between physics and engineering contexts. Observations were conducted using transfer lenses. That is, we observed groups during the physics labs for evidence of transfer. The research question for this study was, to what extent do students relate physics concepts with concepts from other materials (classes) through an engineering design project incorporated in a physics laboratory? Teams were observed over the course of 6 weeks as they completed the second design challenge. The cases presented in this study were selected using observations from the lab instructors of the team’s work in the first design project. Two teams, one who performed well, and one that performed poorly, were selected to be observed to provide insight on how students use physics concepts to engage in the design process. The second design challenge asked students to design an eco-friendly way of delivering packages of food to an island located in the middle of the river, which is home to critically endangered species. They are given constraints that the solution cannot disrupt the habitat in any way, nor can the animals come into contact directly with humans or loud noises. Preliminary results indicate that both teams successfully demonstrated transfer between physics and engineering contexts, and integrated physics concepts from multiple labs to complete the design project. Teams that struggle seem to be less connected with the design process at the beginning of the project and are less organized. In contrast, teams that are successful demonstrate greater co-regulated learning (communication, reflection, etc.) and focus on making connections between the physics concepts and principles of engineering design from their engineering course work.

Kaufman-Ortiz, K., & Morphew, J., & Rebello, N. S., & Rebello, C. (2022, August), Case study on engineering design intervention in physics laboratories Paper presented at 2022 ASEE Annual Conference & Exposition, Minneapolis, MN. 10.18260/1-2--42071

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2022 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015