Asee peer logo

Development and Implementation of a Low-Cost, Visual Evaporative Cooling Desktop Learning Module

Download Paper |

Conference

2022 ASEE Annual Conference & Exposition

Location

Minneapolis, MN

Publication Date

August 23, 2022

Start Date

June 26, 2022

End Date

June 29, 2022

Conference Session

Labs and Demonstrations in Chemical Engineering Education

Page Count

12

DOI

10.18260/1-2--41890

Permanent URL

https://peer.asee.org/41890

Download Count

196

Paper Authors

biography

Olivia Reynolds Washington State University

visit author page

Olivia received her PhD in chemical engineering from Washington State University in 2022. Her research is focused on the development and assessment of low-cost, hands-on learning tools for fluid mechanics and heat transfer. She plans to remain at Washington State University where she will teach the first-year engineering courses and develop the first-year engineering program.

visit author page

author page

Bernard Van Wie Washington State University

author page

David Thiessen Washington State University

Download Paper |

Abstract

Evaporative cooling, used in many industrial and residential applications, is a complex coupled heat and mass transfer process where fluid cooling occurs due to water vaporization and the conversion of sensible to latent heat. In this paper, the development, testing, and implementation of a small, highly visual, Low-Cost Desktop Learning Module (LCDLM) for demonstration of evaporative cooling phenomena in the undergraduate classroom will be presented. The newly developed cross-flow direct evaporative cooler module is constructed from inexpensive expanded aluminum packing media, an off-the-shelf, battery-powered computer fan, a simple water distribution system with a battery-powered pump, and clear acrylic housing. The LCDLM is operated in a non-steady-state recycle mode where a small volume of water is circulated and, depending on the water temperature, either heats or cools incoming air. Preliminary data for simple experiments that can be repeated in the classroom are presented showing the effect of varying the initial water temperature, water flow rate, and air velocity on the cooling rate and temperature profiles in the module. These variables can be easily controlled in the classroom so that students can quickly observe their effect on the performance of the evaporative cooler. Finally, we outline worksheet and conceptual assessment questions to accompany classroom activities and present conceptual assessment results from a spring 2022 pilot classroom implementation of the evaporative cooler LCDLM in a Fluid Mechanics and Heat Transfer course. Significant student learning gains were observed after implementation, suggesting a positive influence of the LCDLM on understanding.

Reynolds, O., & Van Wie, B., & Thiessen, D. (2022, August), Development and Implementation of a Low-Cost, Visual Evaporative Cooling Desktop Learning Module Paper presented at 2022 ASEE Annual Conference & Exposition, Minneapolis, MN. 10.18260/1-2--41890

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2022 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015