Asee peer logo

Evaluating the Potential of fNIRS Neuroimaging to Study Engineering Problem Solving and Design

Download Paper |

Conference

2017 ASEE Annual Conference & Exposition

Location

Columbus, Ohio

Publication Date

June 24, 2017

Start Date

June 24, 2017

End Date

June 28, 2017

Conference Session

Quantitative Research Methods

Tagged Division

Educational Research and Methods

Page Count

17

Permanent URL

https://peer.asee.org/28305

Download Count

60

Request a correction

Paper Authors

biography

Jacob R. Grohs Virginia Tech

visit author page

Jacob Grohs is an Assistant Professor in Engineering Education at Virginia Tech with Affiliate Faculty status in Biomedical Engineering and Mechanics and the Learning Sciences and Technologies at Virginia Tech. He holds degrees in Engineering Mechanics (BS, MS) and in Educational Psychology (MAEd, PhD).

visit author page

biography

Tripp Shealy Virginia Tech

visit author page

Tripp Shealy is an Assistant Professor of Civil and Environmental Engineering at Virginia Tech and principal faculty in the Myers-Lawson School of Construction. He received is doctorate from Clemson University. His research is at the intersection of cognitive psychology and engineering decision making for sustainability.

visit author page

biography

Darren K. Maczka Virginia Tech Orcid 16x16 orcid.org/0000-0001-5966-5670

visit author page

Darren Maczka is a Ph.D. candidate in Engineering Education at Virginia Tech. His background is in control systems engineering and information systems design and he received his B.S. in Computer Systems Engineering from The University of Massachusetts at Amherst. He has several years of experience teaching and developing curricula in the department of Electrical and Computer Engineering at Virginia Tech.

visit author page

author page

Mo Hu Virginia Tech

biography

Robin Panneton Virginia Tech

visit author page

1981-1985 Ph.D. Developmental Psychology; University of North Carolina at Greensboro, Greensboro, NC
1978-1981 M.A. Developmental Psychology ; University of North Carolina at Greensboro, Greensboro, NC
1974-1978 B.S. PsychologyUniversity of Wisconsin at Milwaukee, Milwaukee, WI

My research interests revolve around issues relevant to infants’ perception of information that leads to their emerging communicative skills from birth to toddlerhood. These research questions involve probing aspects of infants’ learning about objects, about people, and about themselves in relation to objects and people. I am particularly interested in how multiple sources of dynamic sensory information drive infants’ attention to and learning about the world in which they live and their ability to communicate about it.

visit author page

author page

Xiao Yang Virginia Tech, Deparment of Psychology

Download Paper |

Abstract

This theory paper introduces functional Near Infrared Spectrometry (fNIRS) methods to the ASEE Educational Research and Methods (ERM) Division as a research method to augment engineering problem-solving and design studies. As technology develops, we can ask and answer emergent research questions to meet National Science Foundation priorities to understand the brain, specifically in how “collective interactions between brain function and our physical and social environment enable complex behavior.” With ERM researchers already pushing the boundaries of knowledge with teaching, learning, and practice of complex engineering skills, the field of engineering education is well poised to partner with cognitive scientists, developmental psychologists, and others to consider how neuroimaging can complement or supplement pressing research questions. Over the past few decades, advances in electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) technology have led to increasing interest in understanding complex neural processes of decision-making and problem solving under laboratory settings. However, although EEG recording is convenient, its poor spatial resolution limits its capacity to determine neural substrates of complex behaviors that involve co-activation of multiple cortical regions. fMRI is very expensive to run and is generally uncomfortable for research participants and thus is not amenable to the lengthy cognitive processes involved in engineering problem-solving and design. Moreover, fMRI does not allow for the continuous assessment of brain activation due to its low temporal resolution. Of particular importance to educational research, body movements (e.g., writing, typing, and talking) produce significant artifacts that are difficult to control for in both EEG and fMRI methods. In contrast, fNIRS has emerged as a novel potential method that is non-invasive and can be used comfortably while participants walk, talk, operate a computer, and otherwise perform the actions we commonly associate with educational settings. Although fNIRS lacks the high spatial resolution of fMRI and provides little information about non-cortical brain activity, fNIRS is sufficient to investigate the prefrontal cortex, the region that is associated with executive function (e.g., planning, problem solving). Taken together, these benefits make fNIRS particularly amenable to use in engineering education research as it allows for neuroimaging in more complex and realistic environments. This paper will first review neuroimaging basics and relevant studies within engineering education with fMRI and EEG techniques (note: ASEE PEER Proceedings, JEE, IJEE search has no hits for fNIRS) in order to position fNIRS as an emergent relevant method for Engineering Education. We will then discuss the specifics of fNIRS experimental design, data collection, data processing and analysis. Analysis procedures involve both univariate and multivariate methods and both will be described along with the types of research questions each can answer (e.g., univariate analysis used to determine if specific tasks induce higher levels of activity). As a demonstration, we will briefly explain how two ongoing projects by the authors are using different experimental designs and analysis to explore different topics: (1) cognitive load differences in engineering brainstorming unconstrained or with parameters and (2) neural correlates of insight and frustration while playing Rube Goldberg inspired puzzle game.

Grohs, J. R., & Shealy, T., & Maczka, D. K., & Hu, M., & Panneton, R., & Yang, X. (2017, June), Evaluating the Potential of fNIRS Neuroimaging to Study Engineering Problem Solving and Design Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. https://peer.asee.org/28305

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2017 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015