Asee peer logo

From Manual Coding to Machine Understanding: Students' Feedback Analysis

Download Paper |

Conference

2024 ASEE Annual Conference & Exposition

Location

Portland, Oregon

Publication Date

June 23, 2024

Start Date

June 23, 2024

End Date

June 26, 2024

Conference Session

DSA Technical Session 7

Tagged Topics

Diversity and Data Science & Analytics Constituent Committee (DSA)

Page Count

17

DOI

10.18260/1-2--47481

Permanent URL

https://peer.asee.org/47481

Download Count

72

Paper Authors

biography

Abdulrahman Alsharif Virginia Polytechnic Institute and State University

visit author page

Abdulrahman M. Alsharif is a research assistant for the Engineering Education Department and a PhD candidate at Virginia Tech.

visit author page

biography

Andrew Katz Virginia Polytechnic Institute and State University

visit author page

Andrew Katz is an assistant professor in the Department of Engineering Education at Virginia Tech. He leads the Improving Decisions in Engineering Education Agents and Systems (IDEEAS) Lab.

visit author page

Download Paper |

Abstract

In this study, we evaluate the use of generative AI (GAI) models for qualitative coding of open-ended student responses, compared to traditional natural language processing (NLP) methods. The main objective was to explore an in-house GAI method to develop themes from students’ feedback responses. A systematic four-step process of text extraction, embedding, clustering, and code generation was employed on responses from a large engineering course regarding the transition to online learning during COVID-19. A locally deployed GAI model (Dolphin-Mistral 2.6) was used for privacy-preserving text extraction, with the UAE-Angle embedding model enabling the clustering of similar responses. GAI was then leveraged to generate qualitative codes and themes from the clusters. Human evaluation (i.e., human in the loop process) found the GAI-generated codes displayed high similarity to human-generated codes, with minor terminology distinctions. Key themes emphasized the importance of instructor feedback, communication strategies, engagement approaches, and resource accessibility for effective online learning experiences. Treemap visualizations aided the interpretation of the hierarchical code structure. While human input was still required for consolidating overlapping sub-codes, the study demonstrates GAI's potential to semi-automate qualitative coding tasks traditionally performed manually, while ensuring data privacy through local deployments. Future work could explore more advanced GAI models to further streamline the clustering and code generation workflow.

Alsharif, A., & Katz, A. (2024, June), From Manual Coding to Machine Understanding: Students' Feedback Analysis Paper presented at 2024 ASEE Annual Conference & Exposition, Portland, Oregon. 10.18260/1-2--47481

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2024 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015