Asee peer logo

“It’s Too Hard” to “I Get It!” – Engaging Developmental Science as a Tool to Transform First-year Engineering Education

Download Paper |


2015 ASEE Annual Conference & Exposition


Seattle, Washington

Publication Date

June 14, 2015

Start Date

June 14, 2015

End Date

June 17, 2015





Conference Session

First-year Programs Division Technical Session 12: Teaching and Advising Students in that Critical First Year

Tagged Division

First-Year Programs

Page Count


Page Numbers

26.1784.1 - 26.1784.16



Permanent URL

Download Count


Request a correction

Paper Authors


Carmela Cristina Amato-Wierda University of New Hampshire

visit author page

Carmela Amato-Wierda is Associate Professor of Materials Science at the University of New Hampshire. She shifted her research focus several years ago to the area of cognitive development of STEM concepts and practices in grades K-16. She has held NSF funded curriculum projects in General Chemistry and Materials Science, and has recently developed two science courses for non-scientists, titled: The Science of Stuff and Nanoscience and Energy. She has taught chemistry courses ranging from Introductory General Chemistry to Advanced Thermodynamics of Materials for graduate students. She has also frequently taught in K-8 classrooms as a guest scientist. She is advisor to the UNH Chapter of the National Society of Black Engineers. She is also the Director the UNH Tech Camp, a summer STEM camp for grades 5-10. Her previous research in materials science focused on the mechanisms of gas phase reactions that make thin films and nanotubes.

Her research in the cognitive development of science learning requires collaborations with faculty in psychology, psychometrics, big data statistics, education, as well as teachers from K-13. Since a sabbatical period in the laboratory of Dr. Kurt Fischer at the Harvard Graduate School of Education, she has spent the past several years developing a common language in order to bridge and translate the findings of developmental science to first year college engineering and science education.

visit author page


Robert M. Henry P.E. University of New Hampshire

visit author page

Associate Professor of Civil Engineering
University of Pennsylvania - BSCE 1973, PhD 1981
Areas of interest: structural analysis, engineering educational software, engineering education, using Minecraft to teach engineering ideas to middle school children

visit author page


Ernst Linder University of New Hampshire (UNH)

visit author page

2001 - present: Professor of Statistics, Dept. of Mathematics & Statistics. UNH.
1994 - 2001 Associate Prof. of Statistics, Dept. of Math. & Statistics, UNH.
1987 - 1994 Assistant Prof of Statistics. Dept. of Math. & Statistics, UNH.
1987 Ph.D. Dept. of Statistics, Penn State University.
Dissertation: Bootstrapping the functional errors in variables model.
1980 - 1987 Teaching Assistant, Dept. of Statistics, Penn State U.
1979 - 1980 M.S. in Mathematics, Union College, Schenectady
1973 - 1978 Undergraduate Studies in Mathematics, ETH, Zurich, Switzerland.

visit author page

Download Paper |


“It’s  Too  Hard,”  to  “I  Get  It!”  –   Engaging  Developmental  Science  as  a  Tool  to   Transform  First  Year  Engineering  Education     According  to  a 2012 article in The Chronicle of Higher Education, “60% of students whoenter college with the goal of majoring in a STEM subject end up graduating in a non-STEMfield”. 1 This exodus from STEM majors is a long-standing problem. For  several  decades  students  have  been  saying  that  they  feel  that  getting  a  STEM  degree  is  too  “hard”.    Engineering  student  indicate  that  they  are  working  constantly  and  yet  still  struggle  to  understand  the  STEM  concepts.    The  decision  by  many  students  to  leave  STEM  majors  is  having  a  negative  impact  on  the  ability  of  higher  education  to  meet  industries’  demand  for  more  STEM  graduates.       In  order  to  address  the  first  year  exodus  from  STEM  majors  in  college,  higher  education  must  shift  its  attention  to  providing  educational  mechanisms  that  focus  on  developing  a  student’s  understanding.    By  understanding  we  mean  a  deep-­‐seated  knowledge  that  has  become  deep-­‐rooted  in  a  student’s  way  of  thinking  and  that  they  can  comfortably  use  when  solving  problems.               The  focus  of  our  paper  is  to  provide  a  new  set  of  fundamental  ideas  from  which  one  can  re-­‐direct  the  conversation  about  the  educational  needs  of  first  year  STEM  students.    We  are  proposing  a  bold  new  direction  that  embraces  a  rich  empirical  theory  from  the  field  of  cognitive  development  called,  dynamic  skill  theory2,3.    This  theory  has  constructed  in  detail  the  characteristics  of  a  person’s  thinking  and  ideas  as  they  develop  their  understanding  of  a  concept  over  time.    When  looking  at  this  sequence  of  characteristics,  one  notices  that  it  follows  a  temporal  pattern  over  the  time  span  that  a  person  spends  on  task  related  to  a  particular  concept.    The  temporal  aspects  of  this  developmental  pattern  are  consistent  with  data  regarding  the  temporal  aspects  of  brain  growth.         One  can  think  of  this  pattern,  seen  in  the  development  of  understanding,  as  being  similar  to  the  pattern  seen  in  motor  development  as  a  baby  learns  to  walk  starting  from  a  lying  down  position,  moving  to  a  sitting  position,  then  to  crawling,  and  finally  to  walking..    It  would  be  considered  quite  unusual  to  see  a  baby  go  from  sitting  to  walking  without  practicing  these  intermediate  steps  or  milestones.         For  example,  one  can  apply  the  same  process  to  a  student  trying  to  use  mathematical  integration  in  an  engineering  design  problem.    In  order  to  understand  integration  a  student  needs  to  understand  the  concepts  of  numbers,  variables,  algebra  and  functions.    Without  developing  a  solid  foundation  in  each  of  these  areas,  it  would  be  highly  unlikely  that  a  student  could  understand  and  use  the  concept  of  integration  in  performing  a  cut  and  fill  design  problem.    However,  a  student  that  does  not  have  an  understanding  of  integration  could  complete  a  cut  and  fill  design  problem  using  the  concepts  of  graphing,  estimation  and  area.    Therefore,  the  instructor  must  have  an  understanding  of  a  student’s  level  of  mathematical  development,  in  order  to  teach  this  design  problem  to  a  student     Dynamic  skill  theory  will  help  address  the  STEM  pipeline  issue  by:   • Allowing  one  to  determine  where  a  student  is  on  the  developmental  trajectory   toward  understanding  a  topic   • Identifying  how  one  might  design  instructional  material  to  facilitate  a  student’s   bridging  from  one  milestone  to  another   • Understanding  that  learning  a  skill  progresses  faster  and  in  a  more  robust  manner   when  the  instructional  material  is  aligned  with  the  student’s  position  on  the   developmental  trajectory  for  a  concept  or  skill     This  paper  takes  the  first  step  toward  translating  this  cognitive  developmental  approach  to  STEM  education  by:   • analyzing  a  typical  physics  problem  in  the  first  year  engineering  curriculum  by   “reverse  engineering”  the  problem  into  its  key  concepts  in  terms  of  the  basic   constructs  of  dynamic  skill  theory,     • reformulating  the  problem  according  to  the  constructs  of  dynamic  skill  theory  for  a   student  at  the  representational  and  abstract  levels  of  development,   • showing  the  typical  level  of  developmental  understanding  shown  by  a  cohort  of   students  enrolled  at  a  medium-­‐sized  public  university  in  the  Northeast,     • Performing  a  hierarchical  cluster  analysis  of  students’  responses  to  open-­‐ended   questions  related  to  kinetic  potential  energy  to  determine  the  developmental  status   of  their  understanding  of  this  topic.     From  the  data  that  we  have  analyzed,  it  is  our  hypothesis  that  the  hardness  claimed  by  the  students  is  explained  by  a  misalignment  between  the  developmental  level  of  understanding  of  STEM  concepts  required  by  first-­‐year  coursework  versus  the  developmental  understanding  of  first-­‐year  engineering  and  science  students  for  these  concepts.    The  paper  will  present  the  first  year  engineering  educational  community  with  the  introduction  of  an  approach  to  address  this  developmental  misalignment,  and  thus  advance  a  student’s  understanding  of  key  STEM  concepts.    Our  objective  is  to  transform  the  current  status  quo  in  first  year  engineering  education  where  students  say,  “It’s  too  hard,”  to  where  they  say,  “I  get  it.”    1. Gates, J., S. James; & Mirkin, C., Encouraging STEM Students is in the National Interest. TheChronicle of Higher Education June 25, 2012, 2012.2. Fischer, K. W., A theory of cognitive development: The control and construction ofhierarchies of skills. Psychological Review 1980, 87, 477-531.3. Fischer, K. W. Bidell, T.R., Dynamic Development of action and thought. In Handbook ofChild Psychology: Theoretical Models of Human Development, Damon, W. L., R.M., Ed. Wiley:New York, 2006; Vol. 1, pp 313-399;    

Amato-Wierda, C. C., & Henry, R. M., & Linder, E. (2015, June), “It’s Too Hard” to “I Get It!” – Engaging Developmental Science as a Tool to Transform First-year Engineering Education Paper presented at 2015 ASEE Annual Conference & Exposition, Seattle, Washington. 10.18260/p.23348

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2015 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015