Asee peer logo

Scaffolding Engineering Students to Be the Problem Solvers We Want Them to Be

Download Paper |


2016 ASEE Annual Conference & Exposition


New Orleans, Louisiana

Publication Date

June 26, 2016

Start Date

June 26, 2016

End Date

August 28, 2016





Conference Session

Division Experimentation & Lab-Oriented Studies: Laboratory Pedagogy

Tagged Division

Division Experimentation & Lab-Oriented Studies

Page Count




Permanent URL

Download Count


Request a correction

Paper Authors


Renee M. Clark University of Pittsburgh

visit author page

Dr. Renee Clark has 23 years of experience as an engineer and analyst. She currently serves as the Director of Assessment for the University of Pittsburgh’s Swanson School of Engineering and its Engineering Education Research Center (EERC), where her research focuses on assessment and evaluation of engineering education research projects and initiatives. She has most recently worked for Walgreens as a Sr. Data Analyst and General Motors/Delphi Automotive as a Sr. Applications Programmer and Manufacturing Quality Engineer. She received her PhD in Industrial Engineering from the University of Pittsburgh and her MS in Mechanical Engineering from Case Western while working for Delphi. She completed her postdoctoral studies in engineering education at the University of Pittsburgh. Dr. Clark has published articles in the Journal of Engineering Education, Advances in Engineering Education, and Risk Analysis.

visit author page

author page

Arash Mahboobin University of Pittsburgh

Download Paper |


In addition to communicating theoretical knowledge, successful engineering education programs equip prospective engineers with the strategies and methods to solve practical problems encountered in the work place. In contrast to many of the limited-scope problems in textbooks, practical problems are open-ended, loosely structured, and complex. Engineering programs have long recognized the need to convey both theoretical and practical knowledge by supplementing textbooks and lectures with laboratory experiences and integrated design projects; however, many of the teaching methods employed in the traditional lecture hall are carried over to the lab environment. In the fall 2014, we observed student difficulty in solving open-ended problems, leading to low achievement outcomes with junior-level bioengineering signals and systems design projects. To drive and improve the development of problem solving skills in our laboratory environment, a three element approach was used that included problem based learning (PBL), flipped instruction, and cognitive apprenticeship. Together, these three elements composed our scaffolding approach, in which a student is supported during the early stages of skill acquisition, and as the skill level increases, support is scaled back. Our hypothesis was that this scaffolding approach, as described in the PBL literature, would lead to enhanced achievement in the fall 2015 on these open-ended laboratory projects. The signals and systems projects required students to design input signals to test and analyze unknown systems using MATLAB programming. The problem based instructional approach for the fall 2015 term began with a series of assignments guiding the students in decomposing the problem into components; this allowed the problem itself to become central to skill development. The flipped instructional environment challenged students to prepare for lab sessions by reviewing programming examples and completing online assessments to gain early feedback before going to the lab sessions. The lab sessions were then reserved for collaborative, hands-on programming practice with peers and just-in-time instructor questioning and monitoring. Students were encouraged to submit periodic progress reports (i.e. design reviews) for instructor feedback and guidance that included their decision justifications. The students, rather than passively taking in information from the instructor, became actively involved in the apprenticeship. As part of this transformed role, the students were encouraged to reflect on changes in their problem solving approaches in the final progress report. The students’ reflective responses were then qualitatively analyzed for insight into their problem solving processes. A statistical comparison of the project scores was also done to assess improvement. The instructor’s assessment of the students’ use of his feedback and their problem solving approaches was gathered via semi-structured interview and included as part of the overall evaluation.

Clark, R. M., & Mahboobin, A. (2016, June), Scaffolding Engineering Students to Be the Problem Solvers We Want Them to Be Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26135

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015