Asee peer logo

Tangible Electricity: Audio Amplifier and Speaker

Download Paper |

Conference

2018 FYEE Conference

Location

Glassboro, New Jersey

Publication Date

July 24, 2018

Start Date

July 24, 2018

End Date

July 26, 2018

Conference Session

Technical Session VI

Tagged Topics

Diversity and FYEE Conference Sessions

Page Count

8

DOI

10.18260/1-2--31428

Permanent URL

https://peer.asee.org/31428

Download Count

619

Request a correction

Paper Authors

biography

John Edward Miller Baylor University

visit author page

John Miller is a Senior Lecturer in the Electrical and Computer Engineering department at Baylor University. He teaches a wide range of courses, including the first-year program, mid-level laboratories, control systems, and capstone design. These courses lean heavily on hands-on experience and active learning. He has a B.S. and M.S. in Electrical and Computer Engineering from Baylor University, and currently serves as the Assistant Chair for the department.

visit author page

author page

Brandon Herrera Baylor University

Download Paper |

Abstract

Projects help students connect concepts to physical reality and allow students to experience the process of design, construction, and testing. Finding suitable projects can be difficult. They should be challenging yet enjoyable, demonstrate the concepts in an understandable way, tangible (hands-on), not cost too much, and not require too much time of either students or instructors. This paper describes one such project: soldering an audio amplifier and building a speaker. The primary goal of this project was to make electrical engineering tangible, as early students (or those in other disciplines) often complain that they cannot “feel” or “see” electricity. This project allowed them to feel, see, and hear the movement caused by an electrical signal and to interact with it through a volume knob. Concepts addressed included circuit theory, operational amplifiers, and electromagnetic fields but could be extended to other topics as well, such as spherical wave propagation or system modeling. This project was implemented with 190 first-year students at Baylor University during the 2017 fall semester. Students were given all of the necessary parts, including a printed circuit board (PCB), electrical components, magnets, and wire. Each student soldered the components onto the PCB and constructed his or her own speaker from household materials, like plain paper, cups, plastic bottles, paper plates, etc. Amplifiers were tested for operation. Speakers were tested for frequency response and loudness. The initial, one-time equipment cost is $5-10 per student, depending on equipment already available, and the recurring materials cost is $10 per student. The students were enthusiastic about their designs both before and after they completed their projects. This paper includes more detail about the project, examples of student designs, speaker testing results, student feedback, and future plans.

Miller, J. E., & Herrera, B. (2018, July), Tangible Electricity: Audio Amplifier and Speaker Paper presented at 2018 FYEE Conference, Glassboro, New Jersey. 10.18260/1-2--31428

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2018 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015