## The Photon Marathon – Explaining Chromatic Dispersion To Engineering Technology Students

Conference

2005 Annual Conference

Location

Portland, Oregon

Publication Date

June 12, 2005

Start Date

June 12, 2005

End Date

June 15, 2005

ISSN

2153-5965

Conference Session

Curriculum Development in Computer/Communications ET

Page Count

12

Page Numbers

10.1316.1 - 10.1316.12

DOI

10.18260/1-2--14156

Permanent URL

https://peer.asee.org/14156

622

#### Abstract NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Session 2247

The Photon Marathon – Explaining Chromatic Dispersion to Engineering Technology Students Warren L G Koontz Rochester Institute of Technology

Introduction

Dispersion or pulse spreading is a basic topic in an undergraduate engineering technology course in fiber optic communication systems. Students need to understand what causes dispersion and to be able to calculate pulse spread and determine how it limits the length and data rate of a communications system. Chromatic dispersion, which results from the wavelength dependency of the velocity of light in an optical fiber, is the primary source of pulse spread in modern communications systems. The standard formula for calculating pulse spread due to chromatic dispersion can be derived using basic calculus and the derivation is comprehensible by most engineering technology students. However, although this formula is quite useful, it does not quantify all of the effects of chromatic dispersion on optical pulses. To get the total picture, one can always solve the pulse propagation equation, but this kind of rigorous analysis is more suited for engineering graduate students. A reasonable compromise between these two extremes is to model an optical fiber as a linear system and many texts do so using a Gaussian impulse response and pointing to references to justify the choice of Gaussian.

A typical open foot race, which often has 1000 or more participants, provides a model of the dispersion process. At the start the runners are tightly packed and it takes only a few minutes for all of the runners to cross the start line. By the finish, however, the runners are widely dispersed and the gap between the winner and the last runner can be an hour or more for a long race. Moreover, a plot of finishing time versus place for such a race resembles a Gaussian cumulative distribution function. This foot race analogy can be used to model chromatic dispersion in terms of the fiber impulse response. In the “photon marathon”, the runners are photons with wavelength-dependent paces. The photon marathon has a perfect start – N photons are launched into the fiber simultaneously, corresponding to an optical power impulse. The “race results” define the impulse response of the fiber. The model and the associated mathematics are well within the capability of third and fourth year engineering technology students.

This paper is organized as follows:

• Overview of chromatic dispersion • Customary approaches to modeling chromatic dispersion o First-order pulse spread formula “Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright © 2005, American Society for Engineering Education”

Koontz, W. (2005, June), The Photon Marathon – Explaining Chromatic Dispersion To Engineering Technology Students Paper presented at 2005 Annual Conference, Portland, Oregon. 10.18260/1-2--14156

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2005 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015