Asee peer logo

Vibrations Labs To Help Achieve A Resonance In Learning

Download Paper |

Conference

2008 Annual Conference & Exposition

Location

Pittsburgh, Pennsylvania

Publication Date

June 22, 2008

Start Date

June 22, 2008

End Date

June 25, 2008

ISSN

2153-5965

Conference Session

Enhancing Mechanics Instruction

Tagged Division

Mechanics

Page Count

14

Page Numbers

13.1382.1 - 13.1382.14

DOI

10.18260/1-2--3100

Permanent URL

https://peer.asee.org/3100

Download Count

575

Request a correction

Paper Authors

biography

Phillip Cornwell Rose-Hulman Institute of Technology

visit author page

Phillip Cornwell is a Professor of Mechanical Engineering at Rose-Hulman Institute of Technology. He received his B.S degree in mechanical engineering from Texas Tech University in 1985 and his Ph.D. from Princeton University in 1989. His present interests include structural dynamics, structural health monitoring, and undergraduate engineering education. Dr. Cornwell has received an SAE Ralph R. Teetor Educational Award in 1992 and at Rose-Hulman he has received the Dean’s Outstanding Teacher award in 2000 and the Board of Trustees Outstanding Scholar Award in 2001. Dr. Cornwell serves on the executive committee of the Mechanics Division of the American Society of Engineering Education.

visit author page

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Vibration Labs to Help Achieve a Resonance in Learning

Abstract A sequence of laboratories has been designed and implemented in an undergraduate course in mechanical vibrations to introduce students to experimental aspects of vibrations and experimental modal analysis. Unfortunately, undergraduate vibration courses, especially if they do not have a lab associated with them, are often perceived by many students to be courses in differential equations. By exposing students to vibration measurement instrumentation such as accelerometers and dynamic signal analyzers, and by allowing them to take experimental data, calculate frequency response functions, and identify system parameters and mode shapes, student learning and motivation is enhanced. One characteristic of the labs described in this paper, in contrast to other vibrations labs discussed in the literature, is the way each lab builds upon the previous one and the fact students test real engineering structures. The initial labs in the course use Electronic Control Products (ECP) hardware and introduce the idea of frequency response functions (FRFs) and system identification. After students are familiar with these ideas, they progress to using PHOTON II’s (a 32 bit, 4 channel data acquisition system), RT Pro for data acquisition and signal processing, and DIAMOND for system identification and mode shape animation. In this paper the labs will be described and assessment results presented as to their efficacy.

Introduction

According to the dictionary, resonance is “a vibration of large amplitude in a mechanical or electrical system caused by a relatively small periodic stimulus of the same or nearly the same period as the natural vibration period of the system.”1 Thus, a large motion can result from a very small stimulus if it is at just the right frequency, that is, at the natural frequency of the system. Is there an analogous phenomenon in learning? Do some teaching strategies result in a larger amount of learning, or a “resonance” in learning, than others? How does one achieve this resonance?

According to the National Research Council report How People Learn: Brain, Mind, Experience and School2, one aspect of effective learning is its durability, that is, does the learning have long- term impact in the ways it influences other kinds of learning or performance? A key conclusion in this report on the concept of durability is the fact that it is essential for a learner to develop a sense of when what has been learned can be used--the conditions of application. Failure to transfer is often due to learners' lack of this type of conditional knowledge. If the problems examined in a vibrations course are always presented in the context of idealized mass, stiffness and damping elements, i.e. looking nothing like a realistic system, then it will be difficult for students to apply the concepts discussed in the course.

Unfortunately, vibrations courses often do not have a dedicated lab associated with them, and the only exposure students have to vibrations experiments are in more general laboratory courses on

Cornwell, P. (2008, June), Vibrations Labs To Help Achieve A Resonance In Learning Paper presented at 2008 Annual Conference & Exposition, Pittsburgh, Pennsylvania. 10.18260/1-2--3100

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2008 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015