Asee peer logo

Virtual adaptation of introductory materials engineering: a partially asynchronous approach to engage a large class

Download Paper |

Conference

2022 ASEE Annual Conference & Exposition

Location

Minneapolis, MN

Publication Date

August 23, 2022

Start Date

June 26, 2022

End Date

June 29, 2022

Conference Session

Materials Division Technical Session 3

Page Count

9

DOI

10.18260/1-2--40604

Permanent URL

https://peer.asee.org/40604

Download Count

169

Request a correction

Paper Authors

biography

Jonathan Brown The Ohio State University

visit author page

Jonathan Brown (B.S., M.S. Mathematics, New Mexico Institute of Mining and Technology; Ph.D. Materials Engineering, New Mexico Institute of Mining and Technology) is an Assistant Professor of Practice in the Department of Materials Science and Engineering at The Ohio State University. His background is in computer simulations and theory of polymer glasses and block copolymers for energy applications. He teaches introduction to materials science and engineering and computational materials science courses.

visit author page

author page

Janet Meier The Ohio State University

author page

Jenifer Locke The Ohio State University

author page

Brandon Free The Ohio State University

Download Paper |

Abstract

With large enrollments (about 200-350) of primarily non-majors, engaging students in the required introductory materials science and engineering course at our university has been a longstanding challenge. In moving to the virtual format in the fall of 2020, we significantly adapted several aspects of the course, many of which have continued to the hybrid format in future semesters, with good results. The primary content was provided through asynchronous videos; this format allowed us to break content into digestible pieces. In particular, multiple mini-lectures and example videos were pre-recorded for each week, with a total viewing time per week somewhat less than the typical total class time. To provide real-time, structured interaction, one live virtual class session per week was held, centered on previously submitted student questions. Smaller teaching-assistant-led recitation sections also met live (virtually or in person), during which “clicker” questions were asked through TopHat. Assignments were also updated to take advantage of the virtual format. Multiple small assignments with lower stakes were due throughout the week: a reading/lecture quiz, a survey to submit questions, and a shortened homework assignment. Finally, we changed some content near the end of the course to allow students to connect the course to their own career aspirations, which we expect can aid in long-term retention. Specifically, students chose among several possible topics to cover in the final weeks, covered via typical pre-recorded lectures and reading, and also guest lectures. They wrote an abstract-length reflection on how they could use what they learned in this course later in their careers. Overall, students remained engaged with the course throughout the semester and provided favorable comments and evaluations of the course, including higher numerical evaluations of the course than in prior semesters.

Brown, J., & Meier, J., & Locke, J., & Free, B. (2022, August), Virtual adaptation of introductory materials engineering: a partially asynchronous approach to engage a large class Paper presented at 2022 ASEE Annual Conference & Exposition, Minneapolis, MN. 10.18260/1-2--40604

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2022 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015