Asee peer logo

Creating Significant Learning Experiences in an Engineering Technology Bridge Course: a backward design approach

Download Paper |

Conference

2022 ASEE Annual Conference & Exposition

Location

Minneapolis, MN

Publication Date

August 23, 2022

Start Date

June 26, 2022

End Date

June 29, 2022

Conference Session

NSF Grantees Poster Session

Page Count

12

DOI

10.18260/1-2--41970

Permanent URL

https://peer.asee.org/41970

Download Count

358

Paper Authors

biography

Adrian Villalta-Cerdas

visit author page

Adrian Villalta-Cerdas has a Ph.D. in Chemistry from the University of South Florida in Tampa, Florida. Currently, he is an assistant professor of chemistry at Sam Houston State University. His research focuses on learning strategies that foster skill development and the study of effective teaching practices in chemistry at the college level.

visit author page

biography

Faruk Yildiz Sam Houston State University

Download Paper |

Abstract

Academic bridge courses are implemented to impact students’ academic success by revising fundamental concepts and skills necessary to successfully complete discipline-specific courses. The bridge courses are often short (one to three weeks) and highly dense in content (commonly mathematics or math-related applications). With the support of the NSF-funded (DUE - Division of Undergraduate Education) STEM Center at Sam Houston State University (SHSU), we designed a course for upcoming engineering majors (i.e., first-year students and transfer students) that consists of a two-week-long pre-semester course organized into two main sessions. The first sessions (delivered in the mornings) were synchronous activities focused on strengthening student academic preparedness and socio-academic integration and fostering networking leading to a strong STEM learning community. The second sessions (delivered in the afternoons) were asynchronous activities focused on discipline-specific content knowledge in engineering. The engineering concepts were organized via eight learning modules covering basic math operations, applied trigonometry, functions in engineering, applied physics, introduction to statics and Microsoft Excel, and engineering economics and its applied decision. All materials in the course were designed by engineering faculty (from the chair of the department to assistant professors and lecturers in engineering) and one educational research faculty (from the department of chemistry). The course design process started with a literature review on engineering bridge courses to understand prior work, followed by surveying current engineering faculty to propose goals for the course. The designed team met weekly after setting the course goals over two semesters. The design process was initiated with backward design principles (i.e., start with the course goals, then the assessments, end with the learning activities) and continued with ongoing revision. The work herein presents this new engineering bridge course’s goals, strategy, and design process. Preliminary student outcomes will be discussed based on the course’s first implementation during summer 2021.

Villalta-Cerdas, A., & Yildiz, F. (2022, August), Creating Significant Learning Experiences in an Engineering Technology Bridge Course: a backward design approach Paper presented at 2022 ASEE Annual Conference & Exposition, Minneapolis, MN. 10.18260/1-2--41970

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2022 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015