AC 2007-80: TEACHING OPERABILITY IN UNDERGRADUATE CHEMICALENGINEERING DESIGN EDUCATIONThomas Marlin, McMaster University Department of Chemical Engineering McMaster University Hamilton, Ontario, Canada Tom Marlin joined the Department of Chemical Engineering at McMaster University in Hamilton, Ontario, Canada, as NSERC Research Professor in Industrial Process Control in 1988. He received his Ph.D. from the University of Massachusetts in 1972; then, he practiced engineering for 15 years in the chemical and petroleum industries. In 1987, he served as the Visiting Fellow, for the Warren Centre Study located at the University of Sydney, Australia. During the one-year project, a
speciesin a macroscale model. Scaling permits identifying the various reaction regimes and domains thatcan occur on both the micro- and macroscale.2e. Process ModelingScaling analysis is used in teaching a course in process modeling to facilitate the following: toassess what approximations can be made in developing a tractable model for the process; todetermine the appropriate values of the process parameters in designing either numerical,laboratory, or pilot-scale testing of a process; and in determining the optimal minimumparametric representation of the describing equations for the process in order to correlatenumerical or experimental data.3. The Scaling Analysis TechniqueThe ○(1) scaling analysis technique of interest here has been described
AC 2007-257: A WEB-BASED COMPLEMENT TO TEACHING CONSERVATIONOF MASS IN A CHEMICAL ENGINEERING CURRICULUMLale Yurttas, Texas A&M University Lale Yurttas is a Senior Lecturer and Assistant Department Head in Chemical Engineering Department at Texas A&M University. She chairs Departmental ABET Committee. She also participates in Engineers Without Borders-USA, especially in TAMU Chapter and coordinates service learning activities for the current NSF project. She has 10 years of experience in engineering education and curriculum development.Zachry Kraus, Texas A&M University Zachary Kraus is a Ph.D. student at Texas A&M University in the Department of Chemical Engineering
the handling of corn/grain on a large commercialfarm.Class time not used for any of the above activities will again consist of a mixture of lectures andactive-learning components with each class linked to earlier classes and connected withinformation from other courses such as chemistry and physics. The variety of teaching methodsand styles incorporated by the instructor include traditional lectures, class activities, discussions,Socratic questioning, Powerpoint presentations, student instruction, cooperative and problem-based projects, demonstrations, discovery laboratories, online interactive simulations, etc. Byrotating though methods which appeal to visual, auditory, and tactile learners, every student isexposed to both their preferred
policy systems. Whilethe opportunities are unlimited, PSE is initially introduced with examples of greatest importanceto chemical engineering undergraduates, with course projects and enrichment readings providingextensions to other applications. The decision support methods we include in PSE are modeling (first principlesfundamental and data-based), simulation, process control, applied statistics, optimization,synthesis and design. These topics overlap with many existing courses in engineering,operations research and applied mathematics, so that much excellent teaching and learningmaterial is available. However, a great challenge exists in teaching them at the appropriateundergraduate level, linking to practical engineering applications
. While Dr. Maring’sequipment was largely stationary (everyone had to go to a fixed location to make use of thetechnology) our equipment is mobile. The equipment consists of two units, one at WSU and onethat is brought into the K-12 classroom. By linking the two via the Internet we can provide real-time audio and visual between the two sites. Thus a teacher and their class could have a virtualface-to-face interaction with the faculty member at WSU, similar to what was done in co-TEACH. The K-12 students can also be brought into the faculty member’s research laboratory tolet them see activities and equipment that would not be accessible to them at their school. To assess goal #2, increased interest in engineering as a major, we developed
faculty who primarily requires lower level skills. We believe this isa fundamental issue in all of engineering education that must be directly dealt with in courseplanning.Bloom’s taxonomy is a powerful tool for discussion among faculty related to teaching. Thisstrength comes from its ability to: ‚ Relate closely to faculty’s experiences related to students not being able to successfully solve real world problems and their difficulty with engineering design. ‚ Lead to examination of what activities (lectures, discussions, recitations, laboratories, out-of-classroom activities) are best suited to challenge students into engagement at higher cognition levels. ‚ Clearly show what testing or assessment methods are needed
features to promoteactive learning, including (1) hands-on activities and demonstrations, (2) the integrated use ofwireless laptops through an in-house developed web-based learning tool to promotemetacognition and assessment of student learning, and (3) a capstone ethics project wherestudents complete a risk assessment of the impact of nanotechnology on society. Additionally,this course will focus on synthesizing fundamental concepts in science and engineering towardsapplications in nanotechnology. The other new sophomore course, Material and Energy Balancesin Nanotechnology (ChE 214), is a ChE specific laboratory-based course, emphasizing how thefundamental skills students have just learned couple to nanotechnology. For ChE students, theapproach
AC 2007-2972: COMPARING STUDENT EXPERIENCES AND GROWTH IN ACOOPERATIVE, HANDS-ON, ACTIVE, PROBLEM BASED LEARNINGENVIRONMENT TO AN ACTIVE, PROBLEM-BASED ENVIRONMENT.Paul Golter, Washington State UniversityBernard Van Wie, Washginton State UniversityGary Brown, Washington State University Page 12.381.1© American Society for Engineering Education, 2007AbstractTwo questions that frequently come up when developing a teaching method that tries to combine bestpractices from multiple pedagogies are: Is this better than how we normally teach? And whichpedagogy is giving the most benefit. In the spring semester of 2006 we had a large enough junior classto separate our required Fluid
AC 2007-1550: VISUAL LEARNING IN A MATERIAL/ENERGY BALANCE CLASSRichard Zollars, Washington State University Dr. Zollars is a professor in, and director of, the School of Chemical Engineering and Bioengineering at Washington State University. He received his Ph.D. from the University of Colorado. He has been teaching engineering for 28 years. His interests are colloidal/interfacial phenomena, reactor design and engineering education.Christopher Hundhausen, Washington State University Dr. Hundhausen is an assistant professor of computer science in the School of Electrical Engineering and Computer Science at Washington State University. Director of the Visualization and End User
Engineering for last seventeen years. His research interests include Environmental and Surface Chemistry, Catalysis, Advanced Materials, Biomedical Research, Capillary Electrophoresis, Advanced Electrochemistry and Sensors.Jewel Gomes, Lamar University Dr. Gomes currently serves as Postdoctoral Researcher at the Department of Chemical Engineering of Lamar University under Dr. Cocke. His research interests are Atmospheric Chemistry, Matrix Isolation Spectroscopy, Gaussian Simulation, Wastewater Management, Materials Characterization, and Electrochemistry. He is also actively involved with Problem Based Learning (PBL) laboratory of Lamar.Hector Casillas, Lamar University Mr. Moreno is currently
Engineering at North Carolina State University. He is coauthor of Elementary Principles of Chemical Processes, an introductory chemical engineering text now in its third edition. He has contributed over 200 publications to the fields of science and engineering education and chemical process engineering, and writes "Random Thoughts," a column on educational methods and issues for the quarterly journal Chemical Engineering Education. With his wife and colleague, Dr. Rebecca Brent, he codirects the National Effective Teaching Institute (NETI) and regularly offers teaching effectiveness workshops on campuses and at conferences around the world
instructors to perform the assessmentreliably is needed. This is discussed later.Capstone Experiences Capstone experiences are where students are supposed to apply what they have previouslylearned to a comprehensive, usually design-oriented, problem. Therefore, this is a very logicalplace to assess what students have learned. Furthermore, since these experiences are usually Page 12.548.4done in teams and they usually involve written reports and oral presentations, the professionalskills (teamwork, communication, global/societal context, life-long learning, contemporaryissues) can be assessed similarly. Laboratory experiences may also fall into
officer in Texas A&M University Student Chapter of AIChE. She has significantly contributed to the implementation of the service learning project as directed studies and also served as a mentor to the participating students both in Fall 2006 and Spring 2007 semesters.Janie Stratton Haney, Texas A&M University Janie Haney has graduated with a B.S. degree from Artie McFerrin Chemical Engineering Department in December, 2006. Prior to her graduation, she has served as a teaching assistant in introductory level material and energy balances course for three semesters consecutively. She has participated fully in the implementation of the service learning project and also mentored the
AC 2007-414: FINITE ELEMENT MODULES FOR ENHANCINGUNDERGRADUATE TRANSPORT COURSES: APPLICATIONS TO FUEL CELLFUNDAMENTALSJason Keith, Michigan Technological University Jason Keith is an Associate Professor of Chemical Engineering at Michigan Technological University. He recieved his PhD from the University of Notre Dame in 2000. Jason teaches the required Transport / Unit Operations 2 course and an elective in fuel cell fundamentals.Faith Morrison, Michigan Technological University Faith Morrison is an Associate Professor of Chemical Engineering at Michigan Technological University. She recieved her PhD from the University of Massachusetts in 1988. Faith teaches the required Transport / Unit
accreditation requirements.8 Critical aspects of our plan include:definition of program objectives; the method used to define student outcomes and competencies;definition of mastery levels that reflect the relative importance of individual competencies;definition of a core set of competencies targeted for mastery by all of our students; feedbackfrom our constituencies; a variety of assessment tools including both direct and indirectinstruments; and methods for continuous evaluation and improvement of our curriculum,teaching pedagogy, and the assessment plan itself. Assessment of student proficiency isperformed at the competency level in order to provide detailed feedback necessary to facilitateevaluation and improvement of student learning.We have
AC 2007-1423: ACTIVE PROBLEM-SOLVING IN A GRADUATE COURSE ONMODELING AND NUMERICAL METHODSKaren High, Oklahoma State University KAREN HIGH earned her B.S. from the University of Michigan in 1985 and her M.S. in 1988 and Ph.D. in 1991 from the Pennsylvania State University. Dr. High is an Associate Professor in the School of Chemical Engineering at Oklahoma State University where she has been since 1991. Her main research interests are Sustainable Process Design, Industrial Catalysis, and Multicriteria Decision Making. Other scholarly activities include enhancing creativity in engineering practice and teaching science to education professionals. Dr. High is a trainer for Project Lead the Way