concepts inmodeling of mechanical systems in the ME undergraduate curriculum. Likewise, this conceptaligns with the topic of vibration modes of mechanical systems14. The transfer function modelfor creep in terms of the spring and damper elements is13,15 N y ( s) 1 1 Gcreep ( s ) ? ? -Â , (5) v( s ) k 0 i ?1 sci - k iwhere ki and ci are the spring and damper constants, respectively [see Fig. 3(a
-equilibrium equation of the link about its other end. E In the hypothetical sub-mechanism, Figure 3, this means that B j is determined from the moment-equilibrium equation of link i about H E E E E ÂM js h ? Ri · B j - Rgi · fi - qi ? Ri e jsi · B j e j - Rgi e jsi · fi e ji i - q i ? Ri B j sin*s j / s i + - Rgi f i sin*i i / s i + - q i ? 0 (15) Therefore Page 13.101.8
those deviations that are significantlydifferent (in a statistical sense) from normal variation in the measurements are worthcorrecting. Thus we need a criterion to determine what constitutes c"ÒtgcnÓ"fgxkcvkqp"cpf"what is just random variability in the measurement.A Shewart chart (see Figure 1) is the most basic tool for determining which variations aredue to a fundamental shift in the process variable and which are merely measurement o u t l i e r f i r s t d e t e c t i o n o f d
consisted of five sequential lab activities in five consecutive weeks: the studentswere required to: 1) calibrate the level sensors and the pump; 2) model the coupled-tanks process with a transfer function; 3) obtain a closed-loop transfer function that satisfies the system performance requirements; 4) determine the controller’s transfer function Gc(s) and convert the transfer function into a difference equation that can be implemented as a digital controller on a computer; and 5) integrate the controller with the sensors, the pump, and the coupled-tanks apparatus to test and analyze the entire system’s performance.Each of these five activities is detailed in subsequent sub-sections. To help the students visuallyunderstand the
measure angular velocity yabout the z direction (pointing out of the page). Page 13.1054.4ii Background on accelerometers can be found in 5.iii A rate gyro works by measuring Coriolis acceleration. For more on rate gyros, see 6. y Path Traversed by Point P a2 ay s a1 s
. T Tclosed Open Is = 0 Figure 8: Control waveform Closed Vs = 0 Figure 7: Switch states Tclosed Ps = I s ⋅ V s = 0 (1) %Duty = ⋅100% (2) TFigure 9 is a discrete time PWM generator circuit implemented in the FPGA. The REG blocksare each registers. Registers store the increment value and threshold value IncVal and ThHold,respectively. The Phase value is represented with N p
mechanicalengineering programs1,2. It is common for the content of such a course to begin with particledynamics. For such analyses the student need only know the mass of the particle(s) involved;usually given in the problem. The course content progresses to rigid body dynamics. With theintroduction of rigid bodies, an understanding of the distribution of the mass within the body isrequired. Typically, however, that said distribution is again given or is readily determined. As aresult, students tend to view the inertial properties of a body as a trivial input to a mathematicalproblem; similar to the length of a connector or the mass of a component. In reality, determiningthe inertia properties of a real structure can be quite challenging.The project presented
displacementcharacteristics but change the design parameters including the radius of the cam base circleand/or roller radius. In the following, appropriate equations are introduced for the calculation of t for each type of the follower. Then, the required design conditions are suggested to preventundercutting.Flat face follower – For the case of flat face followers, the radius of curvature for each value ofcam rotation s is calculated from the following equation5,6: a t ? R0 - s - (1) y2where R0 presents the radius of the cam base circle, y is the cam angular velocity, and s and apresent
xj 1 010 6 Mx j 5 0105 0 0 10 20 30 xj 4Required shear strength: Vu ? 7.685 · 10 lbf 5Required moment strength: M u ? 6.339 · 10 ft© lbf2. Design for moment:Selected beam width: b w ? 22in Selected beam overall thickness: h = 36 in 2Required area of steel: A s ? 4.516in
) Amplifier output current (±50 mA max) Given Kq Servo-Valve Flow Gain (ft3/s/mA) Measured β/ Vt Hydraulic Oil Bulk Modulus (lb/in2)/ Calculated Volume of oil trapped between servo-valve control ports (in3) Kce Total Flow-Pressure Coefficient (in3/sec/psi) Calculated A Area of Cylinder Bore – Area of Cylinder Rod (in2) Measured Kamp Servo-Valve Amplifier Gain Given Kp Proportional Gain Input M Moving Mass (lb●s2/in
AC 2008-1419: KANSAS STATE UNIVERSITY’S ELITE SCHOLARSHIPPROGRAM:ENHANCING LIVES THROUGH TECHNOLOGY ANDENGINEERINGRaju Dandu, Kansas State University at Salina Raju S. Dandu is the program coordinator and professor of Mechanical Engineering Technology at Kansas State University at Salina. He teaches courses in CNC Machine Processes, Material Strength and Testing, Advanced CAD/CAM, Industrial Instrumentation and Controls, and Automated Manufacturing Systems II. He is active in offering workforce training in reliability centered maintenance, CE certification, process instrumentation and PLCs. His areas of interest are: Product risk analysis, Reliability Centered Maintenance, Energy Efficient Lighting
analytical modeling of semiconductor devices and sensors, and electronic instrumentation and measurement.Joshua Ward, Fairchild Semiconductor Josh Ward was a senior level Electrical Engineering student at the University of Southern Maine and was working as a Thin Films Process Technician at Fairchild Semiconductor Corporation, S. Portland while working on this project. He will complete his coursework and graduate from U.S.M. with a B.S. degree in Electrical Engineering in May 2008. Upon graduation he expects to be promoted to Process Engineer at Fairchild Semiconductor. Josh’s interests are semiconductor device fabrication, CMOS integrated circuit design and automated testing.Robert N
) A respect for diversity and a knowledge of contemporary professional, societal and global Outcome 10 issues (ABET 2.j ) Outcome 11 A commitment to quality, timeliness and continuous improvement (ABET 2.k) The application of circuit analysis and design, computer programming, associated software, Outcome 12 analog and digital electronics, and microcomputers to the building, testing, operation and maintenance of electrical/electronic(s) systems. (ABET 8.a) The application of physics or chemistry to electrical/electronic(s) circuits in a rigorous Outcome 13 mathematical environment at or above the level of algebra and trigonometry. (ABET 8.b
1 A c tiv a t io n L e v e l, tf 0 .5 0 0 2 4 6 8 10 12 14 16 18 20 22 0 .1 P o s itio n x ( m ) 0 .0 5
. 49,806-812.2. Lightfoot, E.N. and Moscariello, J.S. (2004). Bioseparations. Biotechnology and Bioengineering 87, 260.3. Bonnerjea, J., Oh, S., Hoare, M., and Dunnill, P. (1986). Protein purification: the right step at the right time.Bio/technology 4, 954.4. Ward, W.W., Swiatek, G.C., and Gonzalez, D.G. (2000). Green fluorescent protein in biotechnology education.Methods Enzymol. 305, 672-680.5. Bes, M.T., Sancho, J., Peleaot, M.L., Medina, M., Gomez-Moreno, C., and Fillat, M.F. (2003). Purification ofcolored photosynthetic proteins for understanding protein isolation principles. Biochem. Mol. Biol. Educ. 31, 119-122.6. Sommer, C.A., Silva, F.H., and Novo, M.R.M. (2004). Teaching molecular biology to undergraduate biologystudents. Biochem. Mol
all students will attend class on the day the course surveysare administered; however, we are considering web-based alternatives to attempt to get 100%.All measurements are normalized to the range 1 - 5, with five meaning “good” and one meaning“poor”. These are then aggregated and are entered into the Assessment Results spreadsheet. Aportion of the spreadsheet for fall 2006 is shown below. Ave % 5's % 4's % 3's % 2's % 1's 5's 4's 3's 2's 1's Comments Page 13.1411.6 B.1.a 3.5 23.5 17.6 47.1 11.8 0.0 4 3 8 2 0 Req - SE 4330 Assess B.1.b 4.6 56.3 43.8
increasingly used as a safety management tool in the nuclear power industry through the 1980’s and 90’s. This capability is of central importance in the domestic nuclear power industry in the new century. PRA provides answers to four important questions: (i) What can go wrong? (ii) How likely is it? (iii) What are the consequences? and (iv) How do uncertainties impact the above answers? There are three levels of PRA analysis in the commercial nuclear power industry: Level 1, Level 2, and Level 3. Level 1 consists of an analysis of plant design and operation focused on the accident sequences that could lead to a core damaging event, their basic causes and their frequencies. Key figure of merit is the Core Damage
AC 2008-499: INTEGRATING APPLICATIONS IN THE TEACHING OFFUNDAMENTAL CONCEPTSPatricia Campbell, Campbell-Kibler Associates, Inc Patricia B. Campbell, President of Campbell-Kibler Associates, Inc, has been involved in educational research and evaluation with a focus on science, technology, engineering and mathematics (STEM) education and issues of race/ethnicity, gender and disability since the mid 1970's. Dr. Campbell, formerly a professor of research, measurement and statistics at Georgia State University, has authored more than 100 publications.Eann Patterson, Michigan State University Eann Patterson taught Mechanics of Solids for twenty years at the University of Sheffield
3 3 -S U MAc ? 0 : / MAc / Ä L - 2 L Õ © PL ? 0 MAc ? / 5PL MAc ? 5PL S Å 3 Ö 2 EI 6 EI 6 EIBy rules 9 and 10 in Section II, the slope sA and the deflection yA at the free end A of the actual cbeam in Fig. 3 are, respectively, given by the “shearing force” VA and the “bending moment” cM A at the fixed end A of the conjugate beam in Fig. 4. We write PL2 3 sA ? VA c ? Acy ? yA ? MAc ? / 5PL 2 EI
- questionnaires.TABLE 1: Multiple–choice results collected from questionnaires given before theworkshop. The results indicate the percent value for each answer.1. A car is moving along a horizontal highway in astraight line at a constant rate of 25 m/s. Itsacceleration is 47 [A][A] 9.8 m/s2 0 [B][B] 9.8 m/s. 41 [C] – correct answer[C] zero. 12 [D][D] 25 m/s.2. A ball is thrown straight upward. What is theacceleration of the ball at the highest point?[A] zero 53 [A][B] 9.8 m/s2 , upward 12 [B][C] 9.8 m/s2, downward
-basedapplication. Using Clearsighted, Inc.’s tools, an ITS was constructed that required nomodification to the original authoring tool. The resulting ITS provides immediate feedback in atutorial setting, offering help when requested and adaptive just-in-time messages, as well asnoting incorrect actions. All of this feedback, from the user’s point of view, seemingly comesfrom the authoring tool. A series of tutorials have been developed that will provide guidance tonew users as they develop online homework assignments. Evaluation of the system is done bycomparing authoring tasks performed by groups who learned to author without using theintegrated system to groups performing the same tasks with the ITS.IntroductionMost activities related to engineering
students and faculty in a variety ofscience and engineering fields. The paper focuses on engineering at colleges and universitiesbecause of the role which these institutions have in inspiring both women and men to chooseengineering as a field, and their potential to change the composition and size of the futureworkforce. Findings include that for fields dominated by men in the 1960s 1) those fields withthe highest (or lowest) proportions of women students in the 60’s still have the highest (orlowest) proportions of women students today, and 2) the proportion of women students is highlycorrelated with the proportion of women faculty in a field. This may suggest that increasing thenumber of women faculty may be a strategy for more rapidly attracting
StudyFigure 1 depicts a schematic of the simulated system. An object with mass, m, is locatedon a flat surface. One edge of the surface is lifted up to form an angle, α, with the ground.The static friction coefficient, µ s, is given. The purpose of this test is to determine theangle of inclination when the object starts the motion by using a digital simulation tool. m = 100 kg µ s = 0.6 Fw = mg α Figure 1. Object on inclined surfaceLMS.Imagine.Lab 7b is used to simulate the system6. In the mechanical library thereexists a component called “linear mass with 2 ports and friction”. The user
calibration, bridge design and evaluation, and reliability of bridge structures. Page 13.1032.1© American Society for Engineering Education, 2008 Reliability of Bridges: Significant Addition to Civil Engineering CurriculumAbstractRapid highway system development in the United States in the 1960’s and 1970’s has resulted ina large number of bridges reaching a stage in need of repair, rehabilitation, or replacement.Truck loads have also been steadily increasing since then. This has made the situation evenworse. Many developed countries are currently experiencing a problem of aging
m =0 m yk +m , where xm is a sample of the transmittedsignal and yk+m is a sample of the return signal, 0 ≤ k ≤ N – 1, and N is the number of samples ineach sequence.Programming ConsiderationsThe program consists of a main form with three plots. User controls allow changes in thefollowing parameters: the number of cycles, amplitude, and frequency of the transmitted pulse;the delay of the received signal; and the type and amplitude of the noise. Additional controlsallow the user to have the program generate a new noise sample or display a histogram of thenoise in a pop-up window. The S/N ratio in the simulated signal plus noise is also displayed.The topmost plot displays the transmitted
, v 4, 1988, p 194-2045. Runyoro J, Boutorabi S, Campbell J., AFS Transactions, v 100, 1992, p 225-2346. Cuesta R, Delgado A, Maroto J, Mozo D, Proc. World Foundry Congress 2006, 4-7 June, Harrogate, UK, paper n. 867. Berry J, Luck R, Felicelli S, Liquid Metal Damage Before and After Pouring – Some Recent Observations, Seminar on High Quality Castings, 27-Mar-2007, Valladolid, Spain8. Poola S, Felicelli S, Legget S, Berry JT, A re-examination of factors affecting porosity gradients in unidirectionally solidified samples, to be presented at 112th Metalcasting Congress, Atlanta, GA, 17-20 May 20089. Felicelli S D, Heinrich J C, Poirier D R: Numerical model for dendritic solidification of binary alloys, Numer
Technology, Engineering Technology, Electronics, as well as Drafting andDesign, attend each Forum. Each participant is responsible for his or her own travel. The mostrecent ET Forum was held March 6-7, 2008 at Pensacola Junior College (PJC), which servesEscambia and Santa Rosa Counties in the state’s panhandle. The fall 2008 Forum will be hostedby Seminole Community College in Central Florida. For more information on the ET Forumsvisit: www.fl-ate.org/partners/et_forum.htm Meetings of the Florida Engineering Technology Forum 1 S 1996 University of Central Florida 2 S 1997 Seminole Community College 3 F 1997 Gulf Coast Community College 4 S 1998
(D) z = 27e−0.927i 4 + i52. Rationalize the complex number, 2+i (A) z = 2.6 + 0.8i (B) z = 0.8 + 2.6i (C) z = −0.8 − 2.6i (D) z = 2.6 − 0.8i3. The Laplace transform of the solution to the following equation with the given boundary conditions is y "+ y − sin 3t = 0 y '(0) = 0 y '(0) = 0 3 3( A) y( s ) = ( B) f = y( s
-1921. Proceedings of the 2006 American Society for Engineering Education Annual Conference & Exposition.12. Glatz, C., Narasimhan, B., Shanks, J., Huba, M., Saunders, K., Reilly, P., Mallapragada, S. 2004. Problem- based learning laboratories involving chemicals from biorenewables. Paper No. 589. Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition.13. Al-Dahhan, M., Picker, S., Weigand, C., Chen, A. 2000. Development of a biochemical experiment for the unit operations laboratory through an undergraduate research project. Paper No. 2578. Proceedings of the 2000 American Society for Engineering Education Annual Conference & Exposition
can be particularly critical in creating connections between teachers in different departments – for example, connecting the math and science teachers. ‚ Introduce Active Collaborative/Cooperative Learning (ACL) to build student engagement in classroom ACTIVITY ‚ Introduce Project Based Learning (PBL) to build connections between core subject areas – no project is solely focused on learning in math (or science, or English or social studies) – and to build student ownership of the learning objectives ‚ Introduce Engineering as the context for “real-world” projects to build student buy-in (why do I need this? s I need this to get a good job/contribute to society, etc)There are several challenges to be