disparities in educational opportunities) [3], [8], [10]–[14], [16], [17], [19],[23]. Following this lecture, the students further engaged with the material outside of class byviewing the movie “Picture a Scientist” and listening to a recording of an episode from ThisAmerican Life entitled “The Problem We All Live With.” These multimedia resources werechosen since they reinforced the topics discussed in the in-class lectures through emotivepersonal examples and provided supporting data on gender and racial barriers in education andscience. The students additionally processed the information presented in the lecture as well asthe multimedia material by submitting a reflection on the content as a course assignment.Approximately midway through the
school students withopportunities to reflect on their physical and mental well-being?Conceptual Framework Funds of Knowledge. The concept of funds of knowledge emerged from the work ofVelez-Ibañez and Greenberg [4] who described the strategic and cultural resources and skillsutilized by Mexican American families in the U.S. Southwest. They described how these“specific strategic bodies of information” [4, p. 314], were utilized to ensure and maintain thewell-being of their families. For instance, they described families and their knowledge of folkmedicine to provide medical care for their families due to the lack of doctors and thediscrimination faced by Mexican Americans in rural areas in the Southwest. Eventually, Molland colleagues [5
for the games included in the curriculum. Figure 1. Example of the hardware settingTheoretical FrameworkWe developed a conceptual framework for the PICABOO hardware curriculum that reflected ourteam’s shared vision for the structure and the outcomes of our curriculum. Specifically, we aimto promote engineering identity and persistence by gamifying the learning experience to fostersituational interest [7] and to support students’ self-efficacy for engineering [8]. Additionally,educators' self-efficacy also influences their confidence in teaching hardware concepts [9]. Therelationships between these theoretical foundations are illustrated in Fig. 2 and are incorporatedinto the design and development of the modules
-basedbystander training; self reflections on microaggressions and implicit bias; and in-class teamexercises and discussions on the intersection of power dynamics, team interactions, anddiscrimination, as well as strengthening empathy though a recognition of societal privilege andeconomics factors. Throughout these trainings, activities, and discussions, an emphasis is placedon development of concrete actions that students can take within their current and future teams topromote an inclusive, collaborative, and psychologically safe environment for all members.As implementation of these active learning techniques to DEI concepts within the seniorundergraduate aerospace capstones is a relatively new update to the curriculum, development ofmetrics to gauge
Paper ID #37979Understanding Expert Perceptions of PBL Integration in IntroductoryAerospace Engineering Courses: Thematic Analysis of Focus Groups withPBL and Aerospace Engineering InstructorsDr. Andrew Olewnik, University at Buffalo, The State University of New York Andrew Olewnik is an Assistant Professor in the Department of Engineering Education at the Univer- sity at Buffalo. His research includes undergraduate engineering education with focus on engineering design, problem-based learning, co-curricular involvement and its impact on professional formation, and the role of reflection practices in supporting engineering
. His research includes undergraduate engineering education with focus on engineering design, problem-based learning, co-curricular involvement and its impact on professional formation, and the role of reflection practices in supporting engineering undergraduates as they transition from student to professional. ©American Society for Engineering Education, 2023 Using the CAP model to Equitably Redesign a First-Year Engineering SeminarIntroductionThe student body in higher education keeps changing, making it critical to pay attention to newgenerations' challenges toward achieving their academic goals [1]. Generation Z students are the core ofthe current student population at colleges and
towards real-world applications through a varietyof mechanisms. Instructors demonstrated moderate support for STSE, with a strong orientationtowards problem solving and design, but shared concerns, in particular about exploring issues ofsocial justice and fairness and the possibility of imposing bias on students. This is reflective ofwork in engineering education that highlights the apolitical nature of engineering and itsresonance in undergraduate engineering programs. Finally, a reframing of STSE is offered toacknowledge the role of problem solving rather than issue exploration in engineering, whilehighlighting the need to further consider the context of engineering activities, aligned with recentwork on sociotechnical thinking and social
infiltrates many areas of engineering andscience. Yet within engineering programs, students often have few opportunities to developexpertise in data science or even to explore how data science is relevant to their degreespecializations. This paper reports on an NSF-funded study of a program that prepares STEMstudents to engage with data science in coursework and then mentors them as they secureinternships and complete a capstone that demonstrates their application of data science expertise.Drawing on a mixed-methods study, including student reflections, capstone project assessment,and survey reporting, this paper suggests not only that students make deep connections betweentheir existing majors and data science but also that students trained in our
education and develop structures and systems tosupport more effective design among both novice and advanced designers [7]. While the resultsof this area of study have been widespread and influential, it is widely acknowledged that there isno “one right way” to practice design, no single way designers think. In part, this finding reflectsthe diversity of design practitioners, who may experience design in a variety of ways [8]. In part,this finding also reflects the diversity of settings in which design is practiced, the changingnature of those settings over time [7], and expansion of design thinking outside of the traditionaldesign settings (e.g., architecture, product design) from which it emerged [4].One important setting for novel applications of
Engineering ProgramsAbstractChemical engineering education needs to be updated to reflect its growth and inclusion ofelements from various fields, such as pharmaceuticals, renewable energy, biotechnology, andconsumer products. As the industry continues to expand and there is a greater need forcommunication and leadership abilities in the 21st century, engineers who are working areanticipated to possess both technical expertise and professional skills. However, the typicalchemical engineering undergraduate core curriculum has not adapted to prepare students for themultiple needs encompassed by the chemical industry. Lack of industry-relevant examples/topicsand applications in the course contents results in less motivated and/or engaged
does engineering? Who is engineering done for? Asengineering is increasingly associated with cutting edge technology and innovative advances incomplex and/or large scale systems, these are questions that merit reflection. These trends tend todisproportionately benefit those in wealthy sectors of society. Simultaneously, those with theleast economic wealth are often negatively impacted. But, engineering doesn’t have to continuealong this path. It is instructive to reflect on the fact that engineering encompasses technologiesand designs that have served much of the human population for ages. Engineering to meet basichuman needs, such as working with the natural world toward sustainable food gatheringpractices, building homes and infrastructure
highlight a small fraction of this new body ofwork, where students begin to engage in discussion of ARDEI concepts and ARDEI context istaught explicitly in engineering courses or is included in engineering problem solving.Some educators have begun adding context to show the connections between engineering andsociety to engineering examples, homework, and textbook problems that have traditionallyfocused on the technical aspects of engineering problem solving. Hirschfield and Mayes capturestudent interest in a chemical engineering kinetics course by using tangible examples of baking,antifreeze, and flame retardants, and asking students to reflect on the ethical considerationspresent in the design and use of these chemicals [14]. Riley’s
particular, thearchetypal figure of Victor Frankenstein offers students a model of a negative “possible self” thatcautions against rogue engineering practices. The paper analyzes themes from Shelley’s novel asthey were used in courses in science, technology, and society (STS) to foster ethical reflection onthe perils of practicing irresponsible, presumptuous, unaccountable, and biased techno-science.IntroductionMary Shelley’s novel Frankenstein is widely regarded as a foundational work of early sciencefiction that cautions against misguided and unethical science and engineering. As such, the novelshould be poised to help engineering undergraduates cultivate moral imagination and acommitment to socially responsible techno-science. Along this line, a
player choice determines the outcome of the game. Our learning outcomes focused on increasing student awareness and interest in computer sciencecareers, fostering moral and inter-personal development by providing students an opportunity to think aboutpurpose and their role in social change, and encouraging students to use games to explore place-basedchallenges in their own lives.Learning Outcomes and Conceptual Framework The conceptual framework links youth development and foundational learning outcomes incomputer science and computational thinking through the program activities. As all of our participants are‘middle school aged’, and we expect that they would be in the process of exploring potential identities,reflecting on
to performtwo interviews with stakeholders or individuals integral to the business. The experienceculminated with a project that required students to create a solution related to disabilitypolicy, workforce management, health/behavioral safety, or technology in the company. Inthe classroom, students were assigned complementary readings on the design process,completed weekly reflections on their learning experiences and weekly readings, anddiscussed the project, the progress, and the resources they required from either faculty orindustry mentors.Being a pilot program, a few challenges were identified. The challenges include framing anadequate assessment framework and balancing the synergy between the work studentsperform inside and outside
out that not all the student outcomes are technical and that non-technical skills are required to be a successful engineer. This is followed by a discussion of thecareer-ready competencies identified by the National Association of Colleges and Employers(NACE) which are listed in Table 1 [10]. After review of the outcomes and competencies,students are asked to reflect on the competencies in which they are most confident at this stage oftheir education and then participate in an exercise to assess the competencies needed whendeveloping a new product.The Poll Everywhere platform was used to crowdsource responses to the question, “Which of thefollowing competencies have you developed during your first year at the university or based onyour
activitiesdeveloped for the pilot offering of a new first-year experience course for all engineering andcomputing majors in our college. The course is multi-disciplinary, with hands-on projects fromseveral different areas. The course introduces engineering and computing design principles andpractices, with a particular focus on an agile methodology. The first activity is part of the teambuilding phase of the course, and it is a kinesthetic activity where students develop a process thatsatisfies constraints and meets an objective. The activity involves several sprints wherein thestudents measure their results, reflect, and improve their processes. It is adapted from an industryactivity using balls; we use balloons because they are more cost effective and
, charge andmomentum balance in biological systems. A total of 41 undergraduates were enrolled in the courseconsisting of 20 students who identified as female and 21 students who identified as male. Ofthese, all participants completed the team assignment and 39 completed the individual reflections(19 females, 20 males).3.2 Study DesignStudents had two weeks to complete the ’Music of the Heart’ assignment [30]. The assignmentwas timed with the heart sound related lectures to ensure students had adequate backgroundphysiologically to complete the assignment. The learning objectives of the assignment were to 1)articulate the differences between a normal and diseased heart sound 2) connect differences inheart sounds to physiological causes and 3
produce a total of 84 Volts DC that was fed to the inverter’s input. The inverter wasconfigured to operate off-grid and produce a 120 Volts AC output connected to the ACdisconnect box, as well as a 50 Volt DC output that charged the battery bank. Thedisconnect box fed the power distribution box which fed the load and 24-volt sourcesthat powered the LIMS box and all the sensors. Although the connection of the sensorsto the LIMS box is straightforward, care must be taken to ensure that the sensors werewired correctly using the appropriate load resistor.Once the sensors were connected, the LIMS “engine” was configured and data wassuccessfully collected reflecting the use of voltage, current and temperature from theload. (a soldering station). The
of our quarterly check-ins with our CoMPASSScholars in November 2022. We had 14 out of the 15 scholars that were on campus (since 5 werestudying at a global project center that term) participate in the event. Several reminders to thestudents with an explanation of the special event with dinner helped with the high participationrate (although some students could attend for only part of the time).Meetings with the CoMPASS support team (i.e., WPI faculty and staff) and the artist took placebefore the event to plan out the 2-hour event, and Figure 1 displays the flow of the eventcomponents. As students arrived to the meeting, we had our typical check-in chats and used theRose-Thorn-Bud activity [4] for mindful reflection. We also designed a
international development often reinforce structures of marginalization, we are vigilant andcritical in implementing this curriculum and seek to minimize the imposition of hegemonicways of knowing, doing, and being. Our pedagogical framework of Localized Engineering inDisplacement is grounded in principles of social justice and critical pedagogy [8]. Theframework centers the local knowledge of the community and empowers displaced studentsto be learners, leaders, and citizens [8]. In DeBoer et al. [8], we describe this framework, itsoutcomes for students, and its impact on the community.In this paper, we explore the drivers of relevant curricular design and share how the LEDcurriculum has evolved over the past seven years through reflection and action
includes three clusters of competencies: intellectual openness, workethic and conscientiousness, and positive core self-evaluation. These clusters includecompetencies, such as flexibility, initiative, appreciation for diversity, and metacognition (theability to reflect on one’s own learning and adjust accordingly).• The Interpersonal Domain includes two clusters of competencies: teamwork and collaborationand leadership. These clusters include competencies, such as communication, collaboration,responsibility, and conflict resolution. While research has shown a host of positive outcomes (i.e., educational attainment, careeradvancement, and physical health) as a result of successful development in The CognitiveDomain, far less research has
recognition, all aimed at collaborative software mod- eling. He also is actively researching the use of games in teaching and faculty development, and is an avid tabletop gamer in his spare time.Nathaniel Bryan ©American Society for Engineering Education, 2023 WIP - Let’s Play - Improving our Teaching by Reversing Roles and being a Learner with Board GamesAbstractThe focus of this work-in-progress (WIP) paper is on the creation and evaluation of a facultydevelopment activity to improve teaching through reflection and empathy. Our intervention takesthe form of a Faculty Learning Community (FLC) where staff and faculty participants havefrequent opportunities to experience role reversal
] to better encapsulate culturally responsive engineeringdesign.These types of frameworks and pedagogical approaches are becoming more widely used withinK-12 education; however, this incorporation of culture and community is not generally adoptedfor college engineering curricula. One of the primary ways to incorporate students’ culture andcommunity is to have students reflect on their own experiences and observations and to havestudents interview elders and community members so that they can include various viewpointsand information into their design solutions.Overview of Professional Development and Engineering Design TasksOver the last two years, there have been two cohorts of teachers within this research project.Teachers in the program
-yearstudents. These 84 studies examined what students learned in their first-year and addressed thenature of preparation and composition of students entering engineering. Experiential learningwas mostly measured through the lens of student performance (89%) through different forms ofevaluations including performance checks, surveys, and individual interviews. A second lens wasfaculty evaluations (7%) including instructors’ observations, feedback, and reflections ofstudents’ performance and experience. Finally, a third lens was industry feedback (4%), obtainedto inform capstone design courses where students work at industrial sites on company basedprojects with industry mentors.From our literature survey, we identified four key elements with
technology students enrolled in the Principles ofMechanical Systems course participated in this study, and were tasked with the design of avehicle that would solve overcrowdedness in urban areas in the next century. Focus of theresearch was on innovative bio-inspired design that is backed by scientific evidence and the useof arts to convey the design. The students then expressed their opinions on their design projectusing a photovoice reflection of their learning. Student responses to the photovoice reflectionprompts related to the design were qualitatively categorized under three themes: 1)demonstrating the importance of entrepreneurial thinking from the end user’s perspective 2)stressing the importance of teamwork and communication and 3) using
instance, it is assumed that students learn debugging by havingexperience with debugging [13]. However, a study by Whalley and colleagues revealed thatstudents’ reflections on their experiences with debugging tend to be negative [14]. In this study,students expressed that exploring strategies such as print statements frequently will make themmiss the program’s general idea, forcing them not to follow a methodological approach [14].Although debugging is a challenging task, it is also an essential skill that students must master toacquire other computational thinking skills [15]. Consequently, exploration of students’debugging skills is essential to develop teaching and learning strategies that fully explode theiralready-in-place preferences and
powerful tools for capturing one’s true affective state, asthey are implicit, cannot be reflected upon, and are typically not amenable to participants’voluntary control.Yet, both explicit (self-report) and implicit (psychophysiological) measures can capture differentfacets of complex behavior. A framework that combines phenomenological andpsychophysiological indicators poses the possibility of a balanced and disciplined account ofcognitive phenomena at multiple levels of analysis that can help bridge the biological mind-experiential gap [7]. Although limited in their scope, several recent investigations have providedevidence in favor of joint phenomenological and psychophysiological indicators of complexhuman experience. For example, combining a
inengineering education. We sought to identify how exemplar engineering students describe familypatterns that influence their engineering success. Career genogram construction and semi-structured interviews reflected intergenerational family patterns that contributed to the success ofthree exemplar senior students in engineering. Case-studies were selected using ExemplarMethodology (ExM). Data was collected on familial career exposure and attitudes, resulting inthe development of genograms. Findings reflect supportive communication, encouraged help-seeking, and reliable support were normed in each family system. Observing family memberswith engineering experience, engaging in pre-college STEM-related activities, and familyattitudes about the value of
engineering and that engineering can only be done by specific peoplethat subscribe to masculinity. Therefore, making presents opportunities for them to challenge thedominant perspectives in engineering that are marginalizing. Making affords learnersopportunities to relate to and see themselves in engineering work.In this work in progress, we present the case of Sarah, an undergraduate student in mechanicalengineering, whose relationship with engineering was once impacted by the marginalizingnarratives. Yet, she (re)negotiated those relationships through a university course that providedher a space to reflect on her experiences in making and how those experiences contribute to herlearning in engineering. Through this case study, we hope to provide