engineering courses.Approximately 75 students take the course annually. Most are civil engineering majors atUSAFA, but approximately one-third of the students come from other military colleges andReserve Officer Training Corps programs from around the country. The course includes fieldtrips, lab exercises, and hands-on activities intended to give students a practical frame-of-reference that is helpful in subsequent analysis and design courses.Most activities consist of some pre-reading, a short classroom lesson, the hands-on portion, andfinally a quiz or laboratory practical exercise. Both the quizzes and practical exercises serve aslow stakes assessments. Faculty develop the course materials and teach the classroom lesson,but to execute the hands-on
," Mentoring & Tutoring: Partnership in Learning, vol. 25, no. 4, pp. 395–416, Aug. 2017.[2] C. Gunn, "Providing Connections Between Freshman And Senior Engineers," in 2004 Annual Conference, 2004, pp. 9–1031.[3] A. F. Newcomb and C. L. Bagwell, "Collaborative learning in an Introduction to Psychological Science laboratory: Undergraduate teaching fellows teach to learn," Teach. Psychol., vol. 24, no. 2, pp. 88–95, Apr. 1997.[4] W. G. Perry Jr, "Forms of intellectual and ethical development in the college years," vol. 256, 1970.[5] R. Pucha, C. Thurman, R. Yow, C. Meeds, and J. Hirsch, "Engagement in practice: Socio- technical project-based learning model in a freshman engineering design course," in 2018 ASEE Annual Conference
Computer Engineering. Her research focus is developing pedagogical practices in STEM education specific to African Americans to increase their participation, interest, engagement, and comprehension of STEM concepts. Additionally, she specializes in the design and implementation of pre-college engineering programs targeting African Americans. Dr. Bailey is the co-founder and President of EdAnime Productions, a company that creates educational programs that teach children about the history and culture of Continental and Diasporan Africans (Meltrek), use STEAM to build character, confidence, and capabilities (Conscious Ingenuity) and focus on manhood development in teenage boys (Asafo Training Camp).Dr. Michel A. Kornegay
mechanical vibrations and controls course byadding laboratory and modeling/simulation components into its curriculum [5-8]; renovate a MEsenior design class through implementing industry-sponsored group projects [9, 10]; revamp aprogramming course via teaching C# and MATLAB to ME students [11]; enhance an engineeringdesign course by designing a group project for this course [12]; and make the topics in athermodynamics course easy to understand by developing instructional courseware for that course[13, 14]. Moreover, Liu and Baker designed a new course assessment tool to effectively collectstudent feedback through a mixture of closed- and open-format questions, formative andsummative questions, and Likert scales [15, 16]. This paper illustrates how
Paper ID #37609Design and Study of a Packed Absorption Column for CO2 ScrubbingDr. Maddalena Fanelli, Michigan State University Dr. Maddalena Fanelli is a Teaching Specialist in the Department of Chemical Engineering and Materials Science at Michigan State University. Dr. Fanelli teaches and coordinates a number of undergraduate courses and laboratories, helping students learn chemical engineering fundamentals and gain hands-on experience.Alexis ChuongMr. Robert Selden, Michigan State University Mr. Robert Selden is a Research and Instructional Equipment Technologist in the Department of Chemical Engineering & Material
). Finally, a contact database from previous Letters of Reference for REU applicants was created. These faculty members are contacted directly and asked to consider their current students for the REU program and to encourage them to apply.Diversity of participants:As a result of our recruitment efforts and value based on attracting applicants from historicallyunderrepresented groups for the purpose of increasing diversity in STEM, our participantsrepresent a diverse and inclusive community. Having a diverse group of participants each yearenhances the learning experience for all student participants, helps to build an inclusive researchenvironment for our laboratories, and provides an opportunity for mentors to work with anincreasingly
, including teaching, research, and services, in order to finish the current semester on timeKey words and phrases: natural and man-made phenomena, pollution-free materials and processes,sustainable manufacturingIntroduction: Historical Antecedents (Background):The campus of the University of Puerto Rico at Mayagüez (UPRM) started as a College of Agriculture andMechanical Arts (CAAM in its Spanish abbreviation) over a century ago. Hence, the emphasis on materials,both organic and inorganic, is of utmost importance here. While the College of Agriculture today has aDepartment of Agricultural Engineering, our Faculty of Engineering also has a newly created Departmentof Engineering Sciences and Materials. Besides, all other engineering departments
regarding active experimentation[7]. Open-ended laboratory courses or even traditional classes with experimentation exposure have shownto provide greater learning value as compared to the traditional lecture only focus [2,8]. Such coursesemploy an approach to learning science that are backed by a significant body of work on research-basedand active pedagogies in various engineering disciplines as well as have demonstrated superior levels ofstudent engagement and learning. Introduction of real-world problems not only allows students to masterappropriate techniques and technologies, but also allows the students to design strategies for solvingproblems and practice an overall process of inquiry [9-10]. Since experimentation is so critical to
Paper ID #38897Board 10: Work in Progress: A Themed Problem-Based Learning RedesignofBioinstrumentation LecturesDr. Xianglong Wang, University of California, Davis Xianglong Wang is an Assistant Professor of Teaching at University of California, Davis. He is interested in problem-based learning in bioinstrumentation courses, gender equity in teaching of machine learn- ing, and student experience and retention in BME students. He won the Teaching Excellence award in Biomedical Engineering at UC Davis in 2023. Prior to joining UC Davis, Xianglong was an Assistant Professor (Teaching) at Washington State University during 2020
Paper ID #38446Board 107: Work in Progress: Development of an Innovation Corps-ModeledBioengineering Course to Promote Entrepreneurial Engagement amongUndergraduate Students.Amanda WallsIshita TandonTimothy J. Muldoon Dr. Timothy Muldoon is an Associate Professor in the Department of Biomedical Engineering at the Uni- versity of Arkansas. Dr. Muldoon teaches the Clinical Observations and Needs Finding, the Biomedical Instrumentation, and the Biomedical Microscopy courses within the Department, and also serves as the Undergraduate Coordinator. Dr. Muldoon’s research interests include engineering education, miniatur- ized
participants whotaught other engineering courses. The demographics (Table 1) indicates that a greater percentageof PE/ED teachers held a bachelor’s degree in a professional engineering field and were certifiedby their state to teach engineering education. Regardless of the potential safety hazards andresulting risks that are present, whether it be hot glue guns or table saws, research hasdemonstrated that teacher safety training and classroom/laboratory management practices(including safety demonstrations and direct supervision) are paramount to reducing the risk ofaccidents [5]. Readers must remember there will always be potential safety hazards and resultingrisks associated with hands-on P-12 engineering teaching and learning, but data-informed
Paper ID #39848Analysis of Student Motivation in an Introductory Engineering TechnologyGateway CourseHernan David Moreno Rueda, Purdue University at West Lafayette (COE)Kevin Michael SimonsonProf. Jeffrey J. Richardson, Purdue University at West Lafayette (COE) At Purdue, Professor Richardson teaches courses in electric vehicle technology, prototype construction / project development and management, and courses in embedded microcontroller sequence. In addition to his teaching responsibilities, Professor RichardProf. Eddy Efendy, Campbell University Eddy Efendy currently teaches Mechanics of Materials in the Engineering
Program and National Science Foundation. Dr. Gayah currently serves as an editorial advisory board member of Transportation Research Part C: Emerging Technologies, an editorial board editor of Transportation Research Part B: Methodological, an associate editor for the IEEE Intelligent Transportation Systems Magazine (an international peer-reviewed journal), a handling editor for the Transportation Research Record and is a member of the Transportation Research Board’s Committee on Traffic Flow Theory and Characteristics (AHB 45), where he serves as a paper review coordinator. He has been recognized with multiple awards for his research and teach- ing activities, including the Dwight D. Eisenhower Transportation
©American Society for Engineering Education, 2023 Paper ID #39169 for administrative, budgetary, hiring, and tenure decisions, and for leading the faculty and staff in the development of research, teaching, and public service programs. Oversees administrative and research expenditures of about $75M per year. Oversees and participates in extensive advancement activities as head, including managing and increasing the Dept. endowment of approximately $75M. Leads aggressive faculty hiring campaign that has hired 35 new tenure-track, 8 teaching, and 5 research faculty since Jan. 2014. Director, Coordinated Science Laboratory
(CWEA), and Engineers Without Boarders (EWB) student chapters. Additionally, Dr. Palomo is the CE Water Analysis laboratory director and coordinates all teaching, research and safety training activities in the engineering laboratory. Dr. Palomo conducts research in surface water quality improvement via natural treatment systems, water and wastewater treatment processes, and water education. She is involved in outreach programs for K-12 students to increase the participation of Hispanic female students in STEM fieldsDr. Erika Robb Larkins Associate Professor of Anthropology and SociologyNatalie MladenovDr. Matthew E. Verbyla, San Diego State University Dr. Matthew E. Verbyla is an Assistant Professor of Environmental
Paper ID #38579Undergraduate Engineering Students’ Time Management and Self EfficacyinDifferent Learning FormatsTara EsfahaniDr. David A. Copp, University of California, Irvine David A. Copp received the B.S. degree in mechanical engineering from the University of Arizona and the M.S. and Ph.D. degrees in mechanical engineering from the University of California, Santa Barbara. He is currently an Assistant Professor of Teaching at the University of California, Irvine in the Department of Mechanical and Aerospace Engineering. Prior to joining UCI, he was a Senior Member of the Technical Staff at Sandia National
and served in several ad- ministrative roles within higher education; secured over $5.5M funding and support for STEM education research; and led several program development efforts, including: a childcare facility at a federal research laboratory, STEM K-12 teacher training programs, a Molecular Biology/Biotechnology master’s degree program at a small internationally-focused teaching institution, as well as a first-year engineering program and a B.S. Engineering Technology degree program at an R1 research institution. She has been recognized for her teaching, advising, and service, and as an Exemplary Faculty Member for Excellence in Diversity, Equity, and Inclusion.Dr. David A. Wyrick PE, CPEM, West Virginia
Paper ID #37014Work In Progress: Professional Development Through High-Impact Experi-encesDr. Charles Patrick Jr., Texas A&M University Dr. Charles Patrick Jr. currently serves as a Professor of Practice in the Department of Biomedical Engi- neering at Texas A&M University. He serves as Director of the Undergraduate Program and administers the Ideas to Innovation Engineering Education Excellence Laboratory. He is involved in Texas A&M’s Center for Teaching Excellence, the Institute for Engineering Education and Innovation, and the College of Engineering’s Faculty Engineering Education Group. His research focuses
dealing with architecture, structural engineering, sustainability, and humanitarianengineering. Some highlights include: MSU Denver study abroad course entitled Refurbishment of Structures hosted by UP in 2010 First UP visiting professor instructing at MSU Denver in 2011 English immersion program at MSU Denver in support of the Master’s in Architecture English-language program at UP in 2013 Collaborative development of an Architecture Minor at MSU Denver from 2013 through 2015 English immersion program for UP engineering faculty at MSU Denver in 2016 Collaborative Research on “Laboratory Testing of Timber-Concrete Composites Adaptable Architecture” from 2013 through present UP
renewable energy, small wind turbine aerodynamics, and noise generation as it applies to the urban environment. Currently, he designs small Unmanned Aerial System propellers, reducing noise and power requirements.Dr. Blake Everett Johnson, University of Illinois Urbana-Champaign Dr. Blake Everett Johnson is a Teaching Assistant Professor and instructional laboratory manager in the Department of Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. His research interests include experimental fluid mechanics, measurement science, engineering education, engineering leadership, and professional identity development.Dr. Liping Liu, Lawrence Technological University Liping Liu is an associate
-strain curves from materialsamples upon which the remainder of the course content is built. The global pandemic forcedengineering students online, challenging materials laboratory instructors to adapt instructionaldelivery to remote learners.There currently exist no ABET-accredited undergraduate mechanical engineering programs taughtfully online.i Moreover, while many other college disciplines have extensive histories of successfulremote and online instruction, the engineering education community has limited experienceteaching lab classes online. Affordable, small, and easily mailed experimental educational lab kitshave emerged as a key advancement in hands-on undergraduate engineering instruction. ii,iii Asmall, inexpensive, and safe benchtop
domestic undergraduate students in focus in the United States higher education institutions. In addition, Mr. Halkiyo is interested in broadening the participation of engineering edu- cation in Ethiopian universities to increase the diversity, inclusivity, equity, and quality of Engineering Education. He studies how different student groups such as women and men, rich and poor, students from rural and urban, and technologically literate and less literate can have quality and equitable learning experiences and thrive in their performances. In doing so, he focuses on engineering education policies and practices in teaching and learning processes, assessments, laboratories, and practical internships. Mr. Halkiyo has been
Paper ID #40289What Difference Does Difference Make? A Case Study of Racial and EthnicDiversity in a Summer Intensive Research InstituteTryphenia B. Peele-Eady, Ph.D., University of New Mexico Dr. Tryphenia B. Peele-Eady is an Associate Professor of Language, Literacy, and Sociocultural Studies in the College of Education and Human Sciences at the University of New Mexico, where she specializes in African American education and ethnographic research. Her reserach focuses on the social, cultural, and linguistic contexts of teaching and learning practices, particularly in the African American community, and culturally
recycled to perform casting.Background & Theory Sand casting is associated with a limited number of Capstone senior design programs offeringbachelor’s degrees in Materials Science and Engineering [i]. However, the technique is absent inthe mechanical engineering Capstone literature; presumably because it is not used elsewhere tosupport ME senior design. Some casting examples do exist in ME manufacturing laboratoryclasses [ii,iii], but predominantly simulation is used in leu of the physical casting process to aidstudent learning and understanding of underlying phenomena. [iv,v] To incorporate sand casting applications in an ME Capstone senior design course, we deployedthe “Energy Engineering Laboratory Module” (EELM) pedagogy. EELM
in the 21st century thanin the preceding timeframes. Engineering technology and the requirements from the globalworkforce are in constant evolution. This behooves engineering programs at universities acrossthe world to adapt their curricula to prepare the graduates for the challenges in the engineeringindustry. The engineering curriculum which adopts integrated projects on a centralizedengineering project platform [1] enables the student to become an active, intentional, and goal-oriented learner through problem-solving [2]-[3] in a project-based [4]-[6] and project-enhancedlearning [7] environment. Traditionally, core lecture and laboratory courses have been taught inrelative isolation of each other. This approach does not effectively
chemical engineers in the U.S. go intoindustry after they graduate, we agreed there would be advantages to finding ways for them tointeract meaningfully with industry professionals. A recent paper on the advantages of EducationalIntensification strengthens the rationale for creating such a program: “… increasing the interactionintensity between industrial practitioners and students better prepares the students for professionalcareers in many ways, including exposing them to the corporate work environment, teaching themvarious communication styles, and introducing them to practical technical approaches withcommercial components” [6].A second reason for adding an Industry Energy Program is that REM students are typically earlier inthe process of
from MIT, Master of Science in Nuclear Plasma and Radiological Engineering from University of Illinois Urbana Champaign, and Bach- elor of Science in Mechanical Engineering from MIT, and is currently teaching at St. Ambrose University in Davenport, Iowa teaching a variety of courses including Intro to Engineering, Heat Transfer, Control Theory, Electronics, and Senior Design. ©American Society for Engineering Education, 2023 Design of Entrepreneurially Minded (EM) Effective Learning Strategies for Engineering Students: Course Structure, Grading Rubrics, Syllabus Design, and In-Class Mini Labs for Student Motivation and Learning
Technology.Dr. Paul N Beuchat, The University of Melbourne Paul N. Beuchat received the B.Eng. degree in mechanical engineering and the B.Sc. degree in physics from the University of Melbourne, Melbourne, Australia, in 2008, and the M.Sc. degree in robotics, systems, and control in 2014 and the Ph.D. degree in 2019, from ETH Z¨urich, Z¨urich, Switzerland, where he completed his research with the Automatic Control Laboratory. He is currently working as a Teaching Fellow with the University of Melbourne. Paul’s research interests include control and optimization of large-scale systems with applications in the areas of building control and multi-agent robotics, as well as research investigating project-based learning pedagogies
Marghitu, Auburn University Dr. Daniela Marghitu received her B.S. in Automation and Computing from Polytechnic University of Bucharest, and her Ph.D. degree in Automation and Computing from University of Craiova. She is a faculty member in the Computer Science and Software Engineering Department at Auburn Uni- versity, where she has worked since 1996. Her teaching experience includes a variety of Information Technology and Computing courses (e.g., Object-Oriented Programming for Engineers and Scientists, Introduction to Computing for Engineers and Scientists, Network Programming with HTML and Java, Web Development and Design Foundations with HTML 5.0, CSS3.0 and JavaScript, Personal Computer Applications
blended project based learning (sbpbl) model implementation in operating system course. International Journal of Emerging Technologies in Learning (IJET), 15(5): 202–211, 2020.[19] Divya Kundra and Ashish Sureka. An experience report on teaching compiler design concepts using case-based and project-based learning approaches. In 2016 IEEE Eighth International Conference on Technology for Education (T4E), pages 216–219. IEEE, 2016.[20] Marc Dahmen, Luis Quezada, Miguel Alfaro, Guillermo Fuertes, Claudio Aballay, and Manuel Vargas. Teaching artificial intelligence using project based learning. Technical report, EasyChair, 2020.[21] D Anitha, C Jeyamala, and D Kavitha. Assessing and enhancing creativity in a laboratory course with