AC 2010-2118: COLLABORATIVE LABORATORY FOR MULTIDISCIPLINARYSTUDY - CASE STUDY SPRING 2009Brian Vuksanovich, Youngstown State UniversityDarrell Wallace, Youngstown State University Page 15.285.1© American Society for Engineering Education, 2010 COLLABORATIVE LABORATORY FOR MULTIDISCIPLINARY STUDY - CASE STUDY SPRING 2009AbstractFor the past couple of years, a disconcerting and repeated criticism by the engineering industryof recent college engineering graduates is the inability to creatively solve problems coupled withineffective communication with workers in other disciplines or trades. Additionally, a lack ofdiscipline has also been noted. Typically, these
AC 2010-2146: TEACHING ENGINEERING REASONING USING A BEAMDEFLECTION LABNatasha Smith, University of Southern Indiana Page 15.1173.1© American Society for Engineering Education, 2010 Teaching Engineering Reasoning using a Beam Deflection LabAbstractWell crafted laboratories reinforce theoretical concepts presented in class, but also sharpenstudents’ technical reasoning skills and provide practice in technical communication. This paperpresents an introductory mechanics laboratory on beam deflection, suitable for freshmenengineering courses or as an opening week experiment for Strengths of Materials. The labconsists of 4 distinct experiments, each requiring students to
AC 2010-48: DESIGN OF A MULTI-MODE FINITE-DIFFERENCE HEATTRANSFER PROJECTMichael Maixner, United States Air Force AcademyWilliam Parker, Air Force Research Laboratories Page 15.358.1© American Society for Engineering Education, 2010 Design of a Multi-Mode Finite-Difference Heat Transfer ProjectAbstract: The development of a comprehensive inite-difference project at the end of a heattransfer curriculum is described. The problem requires evaluation of the school’s football ieldturf heating system, incorporates all of the major heat transfer modes (convection, conduction,and radiation), and requires students to investigate both steady state and transient versions ofthe problem
AC 2010-147: IMPLEMENTING THE DIGITAL SPEED CONTROLLER TUNINGOF A LABORATORY ROTARY HYDRAULIC SYSTEMJohn Ficken, Milwaukee School of Engineering Page 15.688.1© American Society for Engineering Education, 2010IMPLEMENTING THE DIGITAL SPEED CONTROLLER TUNING OF A LABORATORY ROTARY HYDRAULIC SYSTEM Page 15.688.2ABSTRACTThe objective is to give the students practical experience in tuning a digital speed controller for arotary hydraulic system starting with the Ziegler-Nichols method. Digital controller basics andthe tuning method are discussed. In using this method the critical tuning area of system operationmust first be
information: actively (engagement in discussion or physical activity) or reflectively (introspection) 4. Their progress towards understanding: sequential (step by step incrementally) or globally (large jumps)Learning outcomesLearning outcome refers to the perceived knowledge gained by the students through the use ofdifferent methods of teaching or studying. Methods of teaching or studying typically includereading of textbooks, performing experiments in laboratory setting, and using informationtechnologies. Assessment of learning outcomes often include quantitative measures for notionssuch as motivation to learn, real world applicability, and knowledge or learning awareness 13.IV. Research TechniquesEye tracking and its role in usability
. He received his Ph.D. from the Wharton School, University of Pennsylvania and has worked at Temple University and AT&T Bell Laboratories. His research interests focus on researching innovative practices to integrate teaching, research, and outreach both locally and globally (www.litee.org). He has published more than 150 papers in journals, book chapters, and conference proceedings. He has won awards for research and teaching from the Society for Information Management, iNEER, Decision Sciences Institute, American Society for Engineering Education, Frontiers in Education, and the Project Management Institute. He is the editor of the Decision Sciences Journal of Innovative Education
Laboratory) in the following.3.1 Lecture EvolutionThe content of the lecture section of the course changed in reaction to the following influences:1) The content of the freshman engineering program, 2) The need for additional curriculumcontent in professional engineering skills, and 3) The expertise of the instructor. Each of theseinfluences is discussed below.Freshman Engineering Content: The freshman engineering course changed from a design,graphics and programming course to one that surveyed the various fields of engineering. This puta greater demand on the Design & Analysis class to teach the concepts of the design process,design for manufacture and cost estimation.Professional Skills: Course material was added to the lecture part of the
hands-onplatform from which to teach both areas of control can be found in the process controlindustry—the programmable logic controller (PLC).A few industrial, chemical, and electrical engineering as well as various technology programshave included some introduction to PLCs into their programs, where they are often presented aspart of a laboratory course. However, several programs have begun offering courses dedicated tolearning and applying PLCs. In contrast, very few mechanical engineering programs offer anyexposure to PLCs throughout the curriculum. 14,25 Yet, they remain the most common and usefulcomponent in controlling manufacturing processes and machinery. Mechanical engineers need tounderstand how issues of control can affect their
AC 2010-710: UNCERTAINTY ANALYSIS AND INSTRUMENT SELECTIONUSING A WEB-BASED VIRTUAL EXPERIMENTPraveen Malali, Old Dominion University Praveen Malali is a graduate student of Mechanical Engineering at Old Dominion University. He is also a teaching assistant in the thermo-fluids laboratory.Pooja Bais, Old Dominion University Pooja Bais is a graduate student in the College of Business and Public Administration at Old Dominion University.Robert Choate, Western Kentucky University Robert Choate is an Associate Professor of Mechanical Engineering at Western Kentucky University. He teaches thermo-fluid and professional component courses, including Sophomore Design, Thermo-Fluid Systems Lab and ME
, designing telecommunication, data communication and information technology equipment.H. Joel Lenoir, Western Kentucky University Joel Lenoir is the Layne Professor of Mechanical Engineering at WKU, and primarily teaches in the dynamic systems and instrumentation areas of the curriculum. His industrial experience includes positions at Michelin Research and Oak Ridge National Laboratory, as well as extensive professional practice in regional design and manufacturing firms. Page 15.570.1© American Society for Engineering Education, 2010 Extracurricular Project Enhances Student Learning
problems4.3. Lab work structure One of the components that integrates the Mechanics I course that needed deep reformwas the laboratory, mainly concerning lab classes. Former written protocols were abandoned. These were produced by the instructor whogave a rigid orientation, leaving no room for students’ creativity. Quite often students did notprepare their work properly and were passively following protocols. Although being 1st yearstudents with little lab experience, the new learning-teaching paradigm clearly pointed inanother direction. A new challenge was being proposed to the students. They would have to Page 15.237.7create and implement
AC 2010-1837: INTEGRATION AND REINFORCEMENT OF MECHANICALENGINEERING SKILLS BEGINNING IN THE FIRST-YEAR DESIGNEXPERIENCEDebra Mascaro, University of Utah Debra J. Mascaro is the Director of Undergraduate Studies in Mechanical Engineering at the University of Utah. She holds a B.A. in Physics from Gustavus Adolphus College in St. Peter, MN and a Ph.D. in Materials Science and Engineering from the Massachusetts Institute of Technology. She teaches freshman design and senior-/graduate-level classes in microscale engineering and organic electronics.Stacy Bamberg, University of Utah Stacy J. Morris Bamberg is an assistant professor of Mechanical Engineering at the University of Utah. She
recentstudies have shown this effectiveness2,3,4,5. Even though computational methods are valuable,hands-on learning through conducting experiments is also an important teaching tool6.Therefore, there is an effort to develop laboratory work that supplements numericalinvestigations in the field 7. Page 15.23.2In both the numerical analysis and the experimental testing, students work in groups of two tofour students. This was done to promote teamwork and it has also been found that groups closeto four in size are preferential from a learning point of view8.This work is an improvement upon previous work by the authors1. Several changes were made.First, the
AC 2010-1803: THE AERODYNAMICS OF THE PITOT-STATIC TUBE AND ITSCURRENT ROLE IN NON-IDEAL ENGINEERING APPLICATIONSB. Terry Beck, Kansas State University B. Terry Beck, Kansas State University Terry Beck is a Professor of Mechanical and Nuclear Engineering at Kansas State University (KSU) and teaches courses in the fluid and thermal sciences. He conducts research in the development and application of optical measurement techniques, including laser velocimetry and laser-based diagnostic testing for industrial applications. Dr. Beck received his B.S. (1971), M.S. (1974), and Ph.D. (1978) degrees in mechanical engineering from Oakland University.Greg Payne, Kansas State University Greg
Society for Engineering Education, 2002). 10. Lyons, J., Young, E. F. and J. Morehouse, “Capstone Mechanical Engineering Laboratory Uses Racecar,” Proceedings, 2000 ASEE Annual Conference (Washington, DC: American Society for Engineering Education, 2000). 11. Lyons, J. S., Morehouse, J. H. and E. F. Young, “Design of a Laboratory to Teach Design of Experiments,” Proceedings, 1999 ASEE Annual Conference (Washington, DC: American Society for Engineering Education, 1999). 12. Schmaltz, K., Byrne, C., Choate, R. and J. Lenoir, “Senior ME Capstone Laboratory Course,” Proceedings, 2005 ASEE Annual Conference (Washington, DC: American Society for Engineering Education, 2005
texturing, and laser-induced forward transfer. He has received the ASME North Texas Young Engineer of the Year Award, the SMU Rotunda Outstanding Professor Award, and the SMU Golden Mustang Award. He is currently an Altshular Distinguished Teaching Professor at SMU.Paul Krueger, Southern Methodist University Paul Krueger received his B.S. in Mechanical Engineering in 1997 from the University of California at Berkeley. He received his M.S. in Aeronautics in 1998 and his Ph.D. in Aeronautics in 2001, both from the California Institute of Technology (Caltech). In 2002 he joined the Mechanical Engineering Department at Southern Methodist University where he is currently an Associate Professor. He
experience for their careers in the real world. Theinclusion of quantitative assessment data, which was precluded because IRB approval had notbeen originally sought for these classes, would provide more context for the areas in which thisteaching method could be better situated to the students’ needs and learning styles.Bibliography1. Dochy, F., Segers, M., den Bossche, P.V., Gijbels, D., “Effects of problem-based learning: a meta-analysis,” Learning and Instruction, vol. 13, pp. 533-568, 20032. Yadav, A., Shaver, G., and Meckl, P., “Lessons learned: Implementing the case teaching method in a mechanical engineering course,” J. of Engineering Education, Jan 20103. Lee, L.-W., and Ceylan, T., “An active learning mode for laboratory
AC 2010-986: HYBRID COURSE FORMAT FOR PROJECTS IN ROBOTICSHakan Gurocak, Washington State University, Vancouver Hakan Gurocak is Director of School of Engineering and Computer Science and Associate Professor of Mechanical Engineering at Washington State University Vancouver. His research interests are robotics, automation, fuzzy logic, technology assisted distance delivery of laboratory courses and haptic interfaces for virtual reality. Dr. Gurocak is an ABET Program Evaluator for mechanical engineering. Page 15.659.1© American Society for Engineering Education, 2010 HYBRID COURSE FORMAT
MatLAB involve using matrix algebra for most part to solve the equations obtained byeither direct stiffness method or by energy methods for 1D and 2D problems. CAE tools involvemodeling components that involve simple or complex geometry, and solving those using SOLIDEDGE/UG/ANSYS/IDEAS software. Results of assessment will be presented in the form ofcharts and tables and discussed in detail. A sample assessment and evaluation form will also beincluded in the paper.IntroductionMore and more universities are teaching basics of finite element analysis at the undergraduatelevel with more emphasis on theory at the graduate level. For the undergraduates though, thereshould be a balanced approach between basic theory coverage and more simulations
the same open-ended experimental designproblem as part of required laboratory courses. The objective of the assignment was to design,construct, and conduct an experiment to determine the relationships between factors that affectthe forces on a wooden beam that supports the weight of a person. Pre- and post-surveys wereadministered regarding student attitudes towards the problem. The surveys were statisticallyanalyzed to identify similarities and differences within and between the student groups. Focusgroups were also conducted to supplement the survey data.Before designing the experiment, the freshmen and juniors differed in their attitudes towards theexperimental design but felt the same afterwards. The freshmen were more frustrated and
AC 2010-1652: CORRELATIONS BETWEEN MECHANICAL APTITUDE, PRIOREXPERIENCES, AND ATTITUDE TOWARD ENGINEERINGMichele Miller, Michigan Technological University Dr. Michele Miller is an Associate Professor in mechanical engineering. She teaches classes on manufacturing and controls and does disciplinary research on microelectromechanical systems and precision machining. Her educational research interests include problem solving in the lab and informal engineering education.Anna Pereira, Michigan Technological University Anna Pereira is a graduate student in mechanical engineering. Her research interests include human factors, ergonomics, and engineering education.Margot Hutchins, Michigan
recent research includes development of innovative finite element tutorials for undergraduate engineering students and vibrational analysis and measurement of human skeletal muscles under stress using Page 15.1110.1 laser holography. V-mail: 209-946-3091; E-mail: abrown@pacific.edu.Christina White, Columbia University Christina White is a doctoral candidate in the Curriculum and Teaching Department at Columbia© American Society for Engineering Education, 2010 University. Her research focus is in engineering education with particular emphasis in both engineering diversity and humanitarian
. Validation of the error modes has been conducted through inter-rater reliability studiesand student interviews.Trends and insight in to student difficulties with pre-requisite knowledge and an early curricularprofile of issues with pre-requisite knowledge in Mechanical Engineering will be presented.Knowledge about the modes of failure (error) and the overall success or failure of content andskill trajectories will permit focused attention on teaching practices and the development andassessment of activities and learning materials aimed at developing long-term improvement ofthe student knowledge base. Through this research we are beginning to gain an understanding ofstudent performance at various stages of a content or skill trajectory and we are
AC 2010-175: DESALINATION DESIGN PROJECT FOR THERMODYNAMICSLABThomas Shepard, University of Minnesota, Twin Cities Thomas Shepard is a Mechanical Engineering Ph.D. candidate at the University of Minnesota. He received an M.S. in Mechanical Engineering from Oregon State University and B.A. in Physics from Colorado College. His teaching interests include undergraduate courses in the thermal/fluid sciences, experimental methods and renewable energy technologies. He has research interests in experimental fluid mechanics, energy conversion, and engineering education.Camille George, University of St. Thomas Camille George is an Associate Professor and the Program Director of Mechanical Engineering at
, Advanced Dynamics, Advanced Elasticity, Tissue Biomechanics and Biodynamics. He has won teaching excellence awards and the Distinguished Faculty Award. During his tenure at Michigan State University, he chaired the Department of Mechanical Engineering for 5 years and the Department of Biomechanics for 13 years. He directed the Biomechanics Evaluation Laboratory from 1990 until he retired in 2002. He served as Major Professor for 22 PhD students and over 100 MS students. He has received numerous research grants and consulted with engineering companies. He now is Professor Emeritus of Mechanical Engineering at Michigan State University