Communications (1979) (High Honors), Post- graduate Diploma in Electronics and Communications (1981) (High Honors) and M.Sc. in Microwave Communication Systems (1983) (High Honors) from the University of Mosul, Mosul, Iraq. From May 1983 to October 1987 he was working with the Electromagnetic Wave Propagation Department, Space and Astronomy Research Center, Scientific Research Council, Baghdad, Iraq. On December, 1987, he joined the Radiating Systems Research Laboratory, Electrical and Computer Engineering Department, University of New Brunswick, Fredericton, NB, Canada where he obtained his Ph.D. (1992) in Computa- tional Electromagnetics, Wireless Communications, and the Global Positioning System. For his various
experiment” 6 to encourage studentparticipation and promote the use of new technology is now a common practice inuniversities and colleges around the world. As early as the 1990s, teaching and learningwith the internet has: increased student enthusiasm; provided an avenue for efficient data Page 22.642.2exchange; encouraged collaborative, student-led learning; promoted the discussion ofcourse topics before, during, and after class; and offered a variety of learningenvironments5, 6. In its initial stages, internet-based learning was offered through e-maillists, bulletin boards, and basic web sites 6. In some instances, those students receivingweb instruction
consisted of onedesign course in each of the two semesters, with an emphasis on laboratory experiences.Through these courses, the students were given 245 minutes of lab time each week (divided intotwo weekly lab periods of 170 minutes and 75 minutes, respectively) to work on various open-ended design challenges, as well as 50 minutes each week for lectures, which taught primarilywritten and graphical communication skills. The initial design course utilized the projects toexperientially develop important skillsets, such as the design process, project management,verbal communication, teamwork, social considerations, and the application of scientific andmathematic principles. These skills were expected to be developed by the students, with
of engineering or scienceprinciples in the classroom and subsequently practice the theory in the laboratory. Importantly,our scheme also includes mechanisms to measure how successful the classroom experienceshave translated into the immersed environment.Classroom Training for LeadershipWe have observed that leadership is not easy to teach but rather that students can be moldedthrough leadership experiences. Leadership, in other words, can be developed. To that end, wehad experts on leadership/management lecture in class. We assigned the students scholarlyreadings on leadership. We implemented leadership development activities. The activities wedesigned were meant to help them to identify their personal strengths and weaknesses as well
University and has mentored more than 30 undergrad- uate and graduate business plan teams since 2002. In 2010, Carol’s teams won more national business plan competitions than teams from any one university in the 25 year history of the competitions. Carol has won two national awards for innovation in entrepreneurship pedagogy and won the prestigious University of Arkansas Alumni Association Faculty Distinguished Achievement Award for Teaching in 2009. She earned a Ph.D. in Strategic Management with an Entrepreneurship Concentration from the University of Georgia in 1988. Page 22.944.1 c
ofimportant behaviors. Recommendations include incorporating a professional spine in thecurriculum, whereby students may have an opportunity to integrate their knowledge in acontextual environment. A second recommendation outlines the need for students to makeconnections between theory and practice and to develop the thinking skills required forengineering practice. This requires an inductive, as opposed to a deductive, approach to teachingand learning.The integration of professional identity, knowledge and skills requires that students have anopportunity to experience engineering practice, through so-called approximations to practice.Often this means exposing students to laboratory or design project teaching methods (they aredifferent). A recent
AC 2011-1871: ENRICHING K-12 MATH EDUCATION USING LEGOSIrina Igel, NYU Poly IRINA IGEL received the B.S degree in Mathematics with a minor in Computer Science from NYU-Poly, Brooklyn, NY, in 2009. Upon graduating she received an Adjunct Instructor position at the Department of Mathematics at NYU-Poly, teaching undergraduate math courses to incoming freshmen. She is currently serving as a teaching Fellow at the Bedford Academy HS under NYU-Poly’s GK-12 program funded by NSF and CBRI consortium of donors. She is perusing the M.S. degree in Mechanical Engineering with emphasis on Control and Dynamical Systems. Her research interests include cooperative control of multi-agent systems, flocking and shoaling behavior
, the integration ofthis measurement apparatus can be divided by four parts: “system design”, “optical systemintegration”, “data acquirement”, and “data analysis”. Students from Physics Department andDepartment of Optics and Photonics had been participated in this project in their “Special TopicsStudy” course. In this paper, we would like to share our approach to realize the physical conceptwith the community in the hope that this selected topic will be helpful for teaching the principlesand methods about index characterization.Measurement principle and resultAs shown in Fig-1, one laser beam is incident on a prism of apex angle . The first air-prisminterface which laser beam enters is regarded as “entrance face” and the one which laser
AC 2011-2555: THE MATE CENTER: ADDRESSING THE NEED FOR AQUALIFIED OCEAN WORKFORCEDeidre Sullivan, Marine Advanced Technology Education Center Deidre Sullivan Director Marine Advanced Technology Education (MATE) Center Biography Deidre Sullivan is the PI and Director of the Marine Advanced Technology Education (MATE) Center at Monterey Peninsula College (MPC) in Monterey, CA. Deidre conducts workforce research related to marine and geospatial technologies. Deidre is also the department chair for the Marine Science and Technology program at Monterey Peninsula College and teaches courses in seaflooring mapping, GIS, and the Earth and marine sciences. Deidre received her undergraduate degree in Aquatic Biology and
AC 2011-706: THE COLUMBIA CITY TRAILHEAD: A COLLABORA-TIVE CONSTRUCTION ENGINEERING TECHNOLOGY CAPSTONE EX-PERIENCEBarry Dupen, Indiana University Purdue University, Fort Wayne Dr. Dupen is an Associate Professor of Mechanical Engineering Technology at Indiana University Purdue University Fort Wayne (IPFW). He has 9 years’ experience as a metallurgist, materials engineer, and ma- terials laboratory manager in the automotive industry. His primary interests lie in materials engineering, mechanics, and engineering technology education. He is an experienced contra dance caller.M. Regina Leffers, Indiana University Purdue University, Fort Wayne Regina Leffers, Ph.D. is the Director of the Center for the Built Environment and
Professional Engineers, and the United States Society on Dams. Rick’s research focuses on laboratory and field testing of soils and remote sensing applications within geotechnical engineering.Micah Hale, University of Arkansas Page 22.707.1 c American Society for Engineering Education, 2011 Faculty and Student Involvement in a Graduate Level Civil Engineering Seminar SeriesAbstract: In an effort to establish a “community of learning” within the Civil EngineeringDepartment at the University of Arkansas, a new graduate student seminar series was created
AC 2011-1996: DESIGN OF PROBLEM SOLVING ENVIRONMENT FORAUTOMATED SYSTEM INTEGRATION EDUCATIONSheng-Jen Hsieh, Texas A&M University Dr. Sheng-Jen (”Tony”) Hsieh is a Professor in the Dwight Look College of Engineering at Texas A&M University. He holds a joint appointment with the Department of Engineering Technology and the De- partment of Mechanical Engineering. His research interests include engineering education, cognitive task analysis, automation, robotics and control, intelligent manufacturing system design, and micro/nano man- ufacturing. He is also the Director of the Rockwell Automation Laboratory at Texas A&M University, a state-of-the-art facility for education and research in the areas of
currently Associate Director of the O.T. Swanson Multidisciplinary Design Laboratory and Clinical Associate Professor of the Department of Electrical, Computer, and Systems Engineering at RPI. His responsibilities include managing the operation of the Design Laboratory and optimizing the experience for students working on engineering design projects.Samuel Chiappone, Rensselaer Polytechnic Institute SAMUEL G. CHIAPPONE, JR. Manager, Fabrication & Prototyping, School of Engineering Education MS Management Rensselaer Polytechnic Institute, Troy, NY, 1999 BS Teacher of Technical Education Subjects - State University of NY, Oswego, NY, 1997 AAS Industrial Tech. /Mfg. Option - Hudson Valley Community College, Troy, NY
also likely audiences.Graduate students, particularly in the STEM disciplines, must learn data management skills.They will never know their discipline without electronic data capture. However, graduate studenteducation in data curation skills is patchy and frequently reliant on the advisor professor to teachthose skills. For professors who are learning the skills themselves, it is difficult to teach allnecessary skills across the data lifecycle. Additionally, not all graduate students work directlywith an individual advisor in a laboratory. Fellowship students, who are expected to create theirown research plan, may be missed by lab-based data management training. Add in the fact that
. Page 22.1609.1 c American Society for Engineering Education, 2011 Using Arduino as a Platform for Programming, Design and Measurement in a Freshman Engineering CourseAbstract Arduino is a compact, inexpensive, open-source electronics prototyping platform builtaround an Atmel AVR microcontroller. The features, cost, and small size makes Arduino apotent tool teaching as well as practical device use in engineering projects. This paper reports onadapting the Living with the Lab (LWTL) curriculum to the Arduino platform. LWTL wasdeveloped with the Boe-Bot mobile robotics platform and the Basic Stamp microcontroller. TheArduino is more modern and has better technical capabilities, but
government to effect change in education and foster economic development.Luis F. Font, Ana G. Mendez University System Luis F. Font has a B.S. in Biological Sciences from University of Puerto Rico; and a M.B.A. in Marketing from Universidad Metropolitana of Puerto Rico. Luis has been working with students for his entire pro- fessional career. In 2005 he started as an Auxiliary Librarian helping and orientating students with their academic work. Later, he became AHORA Program Coordinator at Metropolitan University where he administrated the entire academic organization and execution programs in education, business and com- puter sciences. Luis has worked as Business Administration Professor where he teaches Marketing and
AC 2011-2457: AN INTERESTING APPLICATION OF OPTICAL MEA-SUREMENT TECHNIQUESBijan Sepahpour, The College of New Jersey Bijan Sepahpour is a registered Professional Engineer and Professor of Mechanical Engineering at TCNJ. He is currently serving as the chairman of the ME department. He is actively involved in the generation of design-oriented exercises and development of laboratory apparatus and experiments in the areas of mechanics of materials and dynamics of machinery for undergraduate engineering programs. Professor Sepahpour did his undergraduate studies at TCNJ and has degrees from New Jersey Institute of Technol- ogy (NJIT). He has served as the Chair of ASEE Divisions of Experimentation and Laboratory
teachers for the week to participatein a teaching laboratory. During the week, the teachers are responsible for teaching the modulesto the students in a highly supported environment, surrounded by SENSE IT staff, available toassist with any questions or concerns. The opportunity for teachers to implement the materialswith students enables the teachers to review the materials again, better understand how theymight teach the materials to students in their classes and offer more time for the mentalpreparation required for implementing new classroom activities.As mentioned, the SENSE IT teachers also participate in four school-year professionaldevelopment workshops. The workshop materials involve the development of sensors, evaluationneeds, and STEM
AC 2011-2148: LESSONS LEARNED FROM A DISTANCE LEARNINGRESEARCH METHODS COURSE CO-TAUGHT BY CLEMSON, UNIVER-SITY OF PITTSBURGH, AND VIRGINIA TECHAmy E. Landis, University of PittsburghMelissa M. Bilec, University of Pittsburgh Melissa M. Bilec, an assistant professor in the Swanson School of Engineering’s Department of Civil and Environmental Engineering, studies and teaches engineering issues related to sustainability, green design, and construction. She focuses largely on the practical aspects of sustainable building, from the life-cycle and cost benefit of ”green” materials to lending civic initiatives a greener touch and conducting metrics research to understand and evaluate high-performance green buildings. She
AC 2011-669: SIMPLE ANALYSIS METHOD FOR ASSESSMENT OF PEOSRichard W. Kelnhofer, Milwaukee School of Engineering Dr. Kelnhofer is Program Director of Electrical Engineering Technology and Assistant Professor at Mil- waukee School of Engineering (MSOE). Formerly, he held engineering and managerial positions in the telecommunications industry. He received his Ph.D. in Electrical Engineering from Marquette University in 1997 and is a Professional Engineer registered in the State of Wisconsin. Dr. Kelnhofer teaches courses in communication systems, signal processing, and information and coding theory.Stephen M. Williams, Milwaukee School of Engineering Dr. Stephen Williams is Program Director of Electrical Engineering
AC 2011-776: SUSTAINABLE STORMWATER MANAGEMENT AS ANOPPORTUNITY FOR CAMPUS AND COMMUNITY-BASED ENGINEER-ING EDUCATIONDavid Brandes, Dept of Civil & Environmental Engineering, Lafayette College David Brandes is Associate Professor of Civil & Environmental Engineering at Lafayette College where he teaches courses on fluid mechanics, water resources engineering, hydrology, environmental engineer- ing, and sustainability. His research areas include impacts of suburbanization on streamflow, hydraulics of stormwater outflow structures, water quality assessment, and simulating eagle migration patterns based on fluid flow principles. His work has been funded by grants from the National Science Foundation, the
AC 2011-814: ASSESSING ENGINEERING STUDENT ATTITUDES ABOUTCOGNITION DUE TO PROJECT-BASED CURRICULUMDonald Plumlee, Boise State University Dr. Plumlee is certified as a Professional Engineer in the state of Idaho. He has spent the last ten years es- tablishing the Ceramic MEMS laboratory at Boise State University. Dr. Plumlee is involved in numerous projects developing micro-electro-mechanical devices in LTCC including an Ion Mobility Spectrometer and microfluidic/chemical micro-propulsion devices funded by NASA. Prior to arriving at Boise State University, Dr. Plumlee worked for Lockheed Martin Astronautics as a Mechanical Designer on struc- tural airframe components for several aerospace vehicles. He developed and
preparation programs at our institution. We believe thelevel of mathematical content is high compared to similar programs elsewhere. We are of theopinion that the multidisciplinary nature of our programs (all four elements of STEM) arebeneficial. Preliminary course surveys and measurements of math anxiety and teaching self-efficacy indicate that the integrated STEM teacher candidates do experience substantialimprovements over the course of their curriculum.IntroductionOur institution supports two Science, Technology, Engineering and Mathematics (STEM)teacher preparation programs. One program, referred to as the Math/Science/Technology(MST) program, is an elementary [preK-5] program and was started in 1998. The secondprogram is a secondary 6-12
AC 2011-1781: WRITING EFFECTIVE EVALUATION AND DISSEMINA-TION/DIFFUSION PLANSThomas A. Litzinger, Pennsylvania State University, University Park Dr. Thomas A. Litzinger is Director of the Leonhard Center for the Enhancement of Engineering Edu- cation and a Professor of Mechanical Engineering at Penn State, where he has been on the faculty since 1985. His work in engineering education involves curricular reform, teaching and learning innovations, faculty development, and assessment. He teaches and conducts research in the areas of combustion and thermal sciences. He is an Associate Editor of Advances in Engineering Education and a Fellow of ASEE.Sarah E Zappe, Pennsylvania State University, University Park Dr. Sarah
AC 2011-1903: ASSESSING FIRST-YEAR PROGRAMS: OUTCOMES, METH-ODS, AND FINDINGSMarie C Paretti, Virginia Tech Marie C. Paretti is an associate professor of Engineering Education at Virginia Tech, where she co-directs the Virginia Tech Engineering Communications Center. Her research focuses on communication in en- gineering design, interdisciplinary communication and collaboration, and design education. She was awarded a CAREER grant from NSF to study expert teaching practices in capstone design courses na- tionwide, and is co-PI on several NSF grants to explore gender in engineering, design education, and interdisciplinary collaboration in engineering design.Kelly J Cross, Virginia Tech University
AC 2011-1268: MOTIVATING DESIGN AND ANALYSIS SKILLS ACQUI-SITION WITH THE INFUSION OF ADAPTED PHYSICAL ACTIVITYPROJECTS THROUGHOUT A MECHANICAL ENGINEERING CURRICU-LUMJames M Widmann, California Polytechnic State University Jim Widmann is a Professor of Mechanical Engineering at California Polytechnic State University, San Luis Obispo and currently the Chair and the ASEE-DEED Division. He received his Ph.D. in 1994 from Stanford University. He teaches mechanics and design courses and conducts research in the areas of design optimization, machine design, fluid power control and engineering education.Brian P. Self, California Polytechnic State University Brian Self is a Professor in the Mechanical Engineering
Department Head of the Department of Engi- neering Education at Virginia Tech. He is the Director of the Multi-University NSF I/UCRC Center for e-Design, the Director of the Frith Freshman Design Laboratory and the Co-Director of the Engineering First-year Program. His research areas are design and design education. Dr. Goff has won numerous University teaching awards for his innovative and interactive teaching. He is passionately committed to bringing research and industry projects into the class room as well as spreading fun and creating engage- ment in all levels of Engineering Education. Page 22.904.1
-Resistant Anti-Corrosion Coatings for Steels. Dr. Beuth’s initiatives in education have included the integration of computer-aided engineering projects throughout the CMU ME undergraduate curriculum. His latest research is in collaboration with the CMU Human-Computer Inter- action Institute, developing software agent-monitored collaborative projects for undergraduate courses. Dr. Beuth was a recipient of the 1998 Ralph R. Teetor Educational Award. In 2000, he was awarded George Tallman and Florence Barrett Ladd Development Professorship in Mechanical Engineering. In 2005 Dr. Beuth was co-recipient of the ASME Curriculum Innovation Award. In 2009 Dr. Beuth received the Benjamin Richard Teare Teaching Award from the
AC 2011-503: BRINGING A TECHNOLOGY ENTREPRENEURSHIP CUR-RICULUM ONLINE AT THE UNIVERSITY OF MARYLANDJames V. Green, University of Maryland, College Park Dr. James V. Green leads the education activities of Mtech at the University of Maryland as the Di- rector of Entrepreneurship Education with responsibilities for the Hinman CEOs Program, the Hillman Entrepreneurs Program, and the Entrepreneurship and Innovation Program. As a Senior Lecturer and Associate Director with Mtech, Dr. Green designs and teaches undergraduate and graduate courses in entrepreneurship and technology commercialization. He leads Mtech’s international entrepreneurship education initiatives to include establishing and managing partnerships. Dr
their analysis, and although engineering students generally havecourses on experimentation, such courses are rarely combined with any significant theoreticalmodeling activities.1.2 A Low-Cost Joint Design Project1.2.1 Course StructureIn order to address the disconnect between theory and real systems that often occurs inengineering education, we developed a low-cost design project, administered jointly between atheory-focused course on heat transfer (ME450) and an experimental laboratory course inthermo-fluid systems (ME495). Note that the heat transfer course has been renumbered since theprevious implementation of the design project, when the number was ME350. The ME450course is focused on the physics of heat transfer, calculating and