Paper ID #9458Interactive, Modular Experiments and Illustrative Examples to Integrate Phar-maceutical Applications in the Chemical Engineering Curriculum and K-12Outreach ProgramsDr. Zenaida Otero Gephardt, Rowan University Zenaida Otero Gephardt is Associate Professor of Chemical Engineering at Rowan University in Glass- boro, NJ where she has served as founding Director of Engineering and Assistant Dean. Her interests are in experimental design and data analysis. She teaches fluid mechanics, process fluid transport, process dynamics and control and unit operations. She developed the laboratory operations and safety program
science and engineering. Page 24.56.1 c American Society for Engineering Education, 2014 A Hybrid Design Methodology for an Introductory Software Engineering Course with Integrated Mobile Application DevelopmentIntroductionThis paper discusses an experimental version of a core undergraduate software engineeringcourse at the University of Cincinnati (UC). EECE 3093C – Software Engineering is a 4-credithour undergraduate course with an integrated laboratory component. It is a required course forall computer science and computer engineering students
first two semesters of study. Finally,conclusions, limitations, and future work are detailed.MethodsTo assess the role of contextual exercises on the manifestation of adaptive expertise and CADmodeling procedures, a series of exercises was introduced into a junior level product designcourse that uses the laboratory portion of the course for CAD instruction. PTC’s Creo Parametricprogram is used for this purpose. The first step was to establish a baseline level of adaptiveexpertise through the use of an adaptive expertise survey (AES) instrument. The instrument usedin this work was developed by Fisher and Peterson 10 and uses a 42 question, 6-point Likert-scaleto assess adaptive expertise based on four main dimensions: multiple perspective
scholar in the School of Chemical, Biological, and Environmental Engi- neering at Oregon State University. Debra has an M.BA, an M.S, and four years of industrial experience including a position in sensor development. Sensor development is also an area in which she holds a patent. She currently has research focused on student learning in virtual laboratories and the diffusion of educational interventions and practices.Prof. Erno Lehtinen, University of Turku ERNO LEHTINEN is professor of education at the University of Turku and is currently holding a five- year Academy Professor position in the Centre for Learning Research of the University of Turku. He has studied early development of mathematical skills, technology
Paper ID #10633Ultra Low-Cost Software-Defined Radio: A Mobile Studio for Teaching Dig-ital Signal ProcessingDr. Cory J. Prust, Milwaukee School of Engineering Dr. Cory Prust is Assistant Professor in the Electrical Engineering and Computer Science Department at Milwaukee School of Engineering (MSOE). He earned his BSEE degree from MSOE in 2001 and his Ph.D. from Purdue University in 2006. Prior to joining MSOE in 2009, he was a Technical Staff member at MIT Lincoln Laboratory. He teaches courses in the signal processing and embedded systems areas.Dr. Steven Holland, Milwaukee School of Engineering Steven S. Holland (M ’13
system using MATLAB (STUBA, Bratislava, Slovakia). Laura performed her graduate studies at Villanova University where she obtained her M.Sc also in Chemical Engineering. Her graduate thesis work involves the characterization & upgrading of biocrude-oil from waste lignocellulosic biomass at Villanova’s Chemical Engineering Biomass Conversion & Research Technologies Laboratory under Dr. Justinus Satrio. Currently, Laura is a process engineer for Jacobs Engineering where she is involved in the design of biopharmaceutical facilities. Dr. Justinus Satrio’s Biography Dr. Justinus A. Satrio is an Assistant Professor of Chemical Engineering at Villanova University, Penn
. Page 24.125.1 c American Society for Engineering Education, 2014 A versatile platform for programming and data acquisition: Excel and Visual Basic for ApplicationsWe have switched to a new software platform to for instrument interface and data collection inour upper-division Sensor Laboratory course. This was done after investigating several optionsand after several meetings with our industrial advisory board. This change was motivated by acampus-mandated change in operating system, plus expiring software licenses. We decided onthe Visual Basic for Applications platform (VBA), which resides in the Microsoft Office suite(in particular, MS Excel). This meets the recommendations of our
Paper ID #9540Hands-on and Virtual Labs for Juniors’ Course on Applied ElectromagneticsDr. Vladimir Mitin, University at Buffalo, SUNY Dr. VLADIMIR V. MITIN, SUNY Distinguished Professor, Department of Electrical Engineering; Uni- versity at Buffalo, SUNY, Buffalo, NY. Has more than 400 technical publications. Vladimir Mitin has made considerable efforts to involve undergraduate and graduate students in his re- search. • He has established a state-of-the-art research laboratory: Materials, Device and Circuit Simu- lations Laboratory. • He graduated thirteen Ph.D. students and six MS students. He has taught Electro
journals, and 35 peer reviewed conference proceedings articles in these areas. He has B.S. in ME, and both M.S. and Ph.D. in IE. He is a member of ASEE, INFORMS, and a senior member of IIE.Dr. Barry Lawrence, Texas A&M University Dr. Barry Lawrence is the Program Coordinator of Texas A&M University’s Industrial Distribution Pro- gram and the Director of the Thomas and Joan Read Center for Distribution Research and Education. He is a co-founder of the the Read Center’s Global Supply Chain Laboratory which conducts industry driven research with firms worldwide.Dr. Esther Rodriguez-Silva PhD, Texas A&M University Biography: Dr. Esther Rodriguez Silva collaborates in the Industrial Distribution Program at
c American Society for Engineering Education, 2014 Transforming a Freshman Electrical Engineering Lab Course to Improve Access to Place Bound StudentsAbstractThis paper discusses the transformation of an introductory electrical engineering lab course intoan interactive hybrid teaching model, a combination of face-to-face and online instruction, toexpand access to Electrical and Computer Engineering to place-bound students. The modifiedcourse will include inter-campus collaborative hands-on laboratory and team project experiences.This has the potential to transform the educational experience of the often isolated place-boundstudents in rural communities, building their social capital and connecting them to a larger
Paper ID #10499Point-of-Care Medical Tests Devices and their Value as Educational Projectsfor Engineering StudentsDr. Michael G Mauk P.E., Drexel UniversityDr. Richard Chiou, Drexel University (Eng.)Mr. M. Eric Carr, Drexel University Mr. Eric Carr is a full-time Laboratory Manager and part-time adjunct instructor with Drexel Univer- sity’s Department of Engineering Technology. Eric assists faculty members with the development and implementation of various Engineering Technology courses. A graduate of Old Dominion University’s Computer Engineering Technology program and Drexel’s College of Engineering, Eric enjoys finding
. Page 24.636.3Virtual Facility and Tutor SystemBased on the development of 3D Virtual Facility, the authors have conducted an experiment toexplore if the use of operating the RP simulator is performing as good as the use ofimplementing the real FDM 3000 machine. The experiment reveals that students who have usedthe RP simulator perform not as good as students who have an instructor in the laboratory,particularly in the comprehensive exam and the calibration operation31. Consequently, theauthors would like to conduct further investigation to learn about (1) If integration of VF andTutor System (TS) can achieve similar performance as a real instructor in the classroom;and (2) What components should be incorporated in the TS to enhance
responsibilities is key to their ownacademic success making appropriate mentoring and training crucial1.In the College of Engineering each of our four departments was assigned funding for threeTeaching Assistants that are designated Fellows. The Teaching Fellows (TFs) not only takeclasses, work on their thesis research and assist with undergraduate laboratories, they also havethe opportunity to gain direct classroom experience as instructor of record for a freshman orsophomore course. With these opportunities in mind, the College of Engineering Dean’s Officeand the four department Chairpersons formed a committee to develop a summer trainingprogram that prepares the TFs for the teaching experience.Since TFs are assigned to a wide variety of different
CourseAbstractWith an increasing emphasis on student learning outcomes and assessment, educators constantlyseek ways to effectively integrate theory and hands-on practices in inventive course designmethodologies. Critics of engineering education argue that educational programs focus too muchon the transmittal of information through static lecture-discussion formats and routine use ofoutdated laboratory exercises. On the other hand, that active learning, learning that involveshands-on experience, significantly improves student comprehension and proficiency. It is clearthat understanding and retention are greatly enhanced when students engage in active learning.While theoretical knowledge remains a fundamental component of any comprehension process,the
Department at Rochester Institute of Technology. He received a Ph.D. in Industrial and Operations Engineering from the University of Michigan in 2002. He is director of the Human Performance Laboratory at RIT and his research interests include the biomechanics of sign language interpreting and the ergonomic design of consumer products. Page 24.786.1 c American Society for Engineering Education, 2014 Integration of experiential learning to develop problem solving skills in deaf and hard of hearing STEM students AbstractA
. Page 24.493.1 c American Society for Engineering Education, 2014 Engineering Camp: a residential experience designed to build academic capital in pre-college studentsAbstractEngineering Camp is a one-week on-campus residential program that exposes pre-college (post7th -11th grade) students to engineering disciplines through introductory seminars,demonstrations, laboratory experiments, and design challenges. The program improves students‟awareness of the breadth of engineering and emphasizes the benefit of developing skills inSTEM. The camp is offered in grade-based parallel sessions geared to the audience, and camperscan return in subsequent summers. Importantly, Camp provides a
Warminster, PA where he estab- lished an optical communications laboratory for development and characterization of optical components, systems, and protocols for high-performance avionics data networks. Dr. Rosen is currently an assistant clinical professor at Drexel University, where he is responsible for developing and teaching courses in microprocessors, microcontrollers, FPGAs, and optics. Dr. Rosen has carried out research sponsored by the National Security Agency, National Science Foundation, the National Oceanic and Atmospheric Administration, DARPA, the Office of Naval Research, Air Force Office of Scientific Research, and the Missile Defense Agency. Dr. Rosen is the author or coauthor of over 80 publications and
team leader is required to be selected, who will serveas project manager of the team to arrange different activities. The students are not only requiredto create a robot to fulfill the technical challenge, but also to conduct an economic or marketanalysis for their own robots. The final project grade considers students’ performance in bothtechnical and business aspects. Figure 1. Project Challenge LayoutThe implementation of the learning module with six major engineering design steps during thesix-week course curriculum is described in Table 1 below with detail weekly lectures,laboratories, entrepreneurial thinking, and deliverables. The learning module integrated theinnovative entrepreneurial thinking into a
corresponding improvement efforts will be reported.BackgroundStrength of materials consists of stress, strain, and stability, and how material properties andgeometry affect them. This sector of mechanics serves as the foundation for several disciplines.As a result, strength of materials knowledge is required for accreditation in several engineeringtechnology disciplines, and is often included in a variety of affiliated programs, as listed in Table1.1 Engineering technology’s foundational focus is on practical application of engineeringprinciples and sets it apart from engineering.2,3 Traditionally, this focus on application has reliedon the existence of well-equipped industrial-type laboratories. As equipment costs increase,corporate donations dwindle
Break 1:00-5:30 Individual Research (B) Group (C) Group (E) Industry Design Collaboration and Lab project/ Session Visits, competition (D) Weekly Outreach, or preparation Seminar Social InteractionIndividualized Research ProjectsEach REU fellow will directly participate in regular research activities together with faculty andother research personnel in one or more of our research laboratories
Paper ID #9705Evidence for the Effectiveness of a Grand Challenge-based Framework forContextual LearningDr. Lisa Huettel, Duke University Dr. Lisa G. Huettel is an associate professor of the practice in the Department of Electrical and Computer Engineering at Duke University where she also serves as associate chair and director of Undergraduate Studies for the department. She received a B.S. in Engineering Science from Harvard University and earned her M.S. and Ph.D. in Electrical Engineering from Duke University. Her research interests are focused on engineering education, curriculum and laboratory development, and
1985. From January 1985 to September 1986, he was employed as a Research Scientist at Argonne National Laboratory, Argonne, IL, and an Assistant Professor at Purdue University Calumet until September 1986. Then, he joined the Department of Electrical and Computer Engineering at IUPUI where he is now Professor and Associate Chair of the Department. His research interests include solid State devices, VLSI signal processing, and electromagnetics. He is a senior member of IEEE and a PE registered in the State of Indiana.Dr. Sudhir Shrestha, IUPUI Dr. Shrestha received his B.E. in Electrical and Electronics Engineering from Kathmandu University in 2003 and his Ph.D. in Engineering with an emphasis on Micro/Nanosystems
graduate education at the University of New Mexico. Throughout his undergraduate degree, Francisco was the President of the NMT Society of Automotive Engineers Student Chapter. During his time as president, the chapter grew to become one of the largest chapters in the world. He also volunteered at the NM State Science and Engineering Fair and NM State Science Olympiad. Francisco was awarded the NMT Student Appreciation Award (2013), the DOE Summer Visiting Faculty-Student Fellowship at Sandia National Laboratories (2013) and the University of Illinois at Urbana-Champaign Outstanding Scholarship Award (2012).Ms. Miquela Trujillo, New Mexico Institute of Mining and Technology Miquela Trujillo is an engineering student
Paper ID #10559A Engineering Discipline Awareness Workshop for Pre-Service STEM Teach-ersDr. Fernando Garcia Gonzalez, Florida Golf Coast University Dr. Fernando Gonzalez joined FGCU as an Assistant Professor in the Computer Engineering Program in the fall of 2013. Previously he was an Assistant Professor within the Engineering, Math, and Physics Department at Texas A&M International University in Laredo, Texas. Prior to that he was a Technical Staff Member (researcher) for the U.S. Department of Energy at Los Alamos National Laboratory in Los Alamos, New Mexico. Dr. Gonzalez was also a faculty member in the Electrical
an emphasis in program evaluation. She specializes in the evaluation of programs in STEM education across the K-20 spectrum and the evaluation of STEM Education and Public Outreach programs. Carol has designed and conducted evaluations of projects sponsored by the National Science Foundation, the William and Flora Hewlett Foundation, NASA, the Arizona Board of Regents, Goddard Space Flight Center, Jet Propulsion Laboratory and the Arizona Department of Education, among others.Dr. Jeff Frolik, University of VermontDr. Paul G. Flikkema, Northern Arizona UniversityDr. Aaron T. Ohta, University of Hawaii at Manoa Dr. Aaron Ohta received a B.S. from the University of Hawaii at Manoa in 2003, an M.S. from the University of
students’ first semester of theirsophomore year. Although the majority of the students in this course comes from Electrical andComputer Engineering majors, there are frequently students from Computer Science, Math,Mechanical Engineering majors, etc. The courses that follow in the digital systems sequence arelisted below: ECE 234 Digital design using CPLD* ECE 332 Microprocessor Applications** ECE 335 Computer Architecture * ECE 336 Computer Systems Laboratory* ECE 534 VHDL and Applications*** ECE 532 Embedded Microprocessor*** * required only by B.S.Comp.E, ** required by both B.S.Comp.E. and B.S.E.E *** electives for both B.S.Comp.E. and B.S.E.EOur research started in the Fall 2011 semester
Paper ID #10212Using Engineering to Address the Common Core Standards: A Four WeekWorkshop (Curriculum Exchange)Dr. Patricia Carlson, Rose-Hulman Institute of Technology Dr. Patricia ”Pat” A. Carlson is a transplanted middle westerner, having spent her childhood in Norfolk, Va. She came to Rose-Hulman Institute of Technology early in her teaching career and has taught a variety of courses over the past three decades. Dr. Carlson has held a number of American Society for Engineering Education summer fellowships that have taken her to NASA-Goddard, NASA-Langley, the Army Research Laboratory in Aberdeen, Maryland, and
videos, by the students reading short articles, visiting websites, andother modes of content delivery. Application of the lecture content is done in the classroomusually in small groups in the form of problem solving, laboratory activities (virtual or physical),group learning etc. with guidance by the instructor. The flipped classroom paradigm was firstintroduced 2007 for teaching high school science (1, 2) but has since attracted science andengineering instructors in universities and colleges (3, 4). Among its main benefits, the flippedclassroom enables students to receive the most support when they are working on the mostcognitively demanding tasks. The flipped classroom increases interaction between instructor andstudent and between student
mobile hands-on learning into their courses.Deborah Walter (RHIT) and Kathleen Meehan (VT) have initiated the development of a conceptinventory for non-ECE majors who are enrolled in circuits classes with either hands-on activities inthe classroom or laboratory exercises conducted outside of the classroom, both facilitated byportable electronic instruments. Co-PI Ella Ingram (RHIT) has studied the existing literature obteaching circuits, examined circuits concept inventories developed by others in the field, andparticipated in the learning of basic concepts in circuits and use of lab equipment along withstudents enrolled in circuits classes for non-majors. The plan is to present a draft of the conceptinventory at the 2014 workshop to obtain
schoolteachers participate in an intensive summer research experience in engineering labs, buildcurriculum based on the laboratory research content that they learn, participate in lesson study,and implement new curriculum in their middle or high school classrooms. The program has thecombined intent of bringing innovative engineering research to middle and high school studentsand improving student achievement through scientific inquiry. The program’s design includes asummer intensive experience in which teachers fully participate in engineering laboratoryresearch and engage in an inquiry focused content-to-pedagogy teacher professionaldevelopment workshop, building curriculum from their lab research experience with foci onscientific experimentation and