c American Society for Engineering Education, 2015 Design and Evaluation of a Web-based Virtual Open Laboratory Teaching Assistant (VOLTA) for Circuits Laboratory Firdous Saleheen, Salvatore Giorgi, Zachary Smith, Joseph Picone and Chang-Hee Won Department of Electrical and Computer Engineering Temple UniversityAbstractA Virtual Open Laboratory Teaching Assistant (VOLTA) provides personalized instruction forstudents participating in a self-paced undergraduate circuits laboratory. VOLTA allows studentsto work in the open laboratory even when a teaching assistant is unavailable. The system’scomponents include pre-lab testing and instruction, engineering design exercises
Paper ID #12974Design and Hardware Implementation of Laboratory-Scale Hybrid DC powerSystem for Educational PurposeMr. Mustafa Farhadi, Florida International University Mustafa Farhadi received the BS degree in EE from Mazandaran University, Mazandaran, Iran, in 2007 and the MS degree in EE from Iran University of Science & Technology, Tehran, Iran in 20011. He is currently a graduate teaching and research assistant working toward the Ph.D. degree at the Department of Electrical and Computer Engineering Department, Florida International University, Miami, Florida USA. His current research interests include design
Paper ID #12331A Unit Operations Laboratory Experiment Combined with a Computer Sim-ulation to Teach PID Controller TuningDr. William M. Clark, Worcester Polytechnic Institute Professor Clark holds B.S. and Ph.D degrees in Chemical Engineering from Clemson University and Rice University, respectively. He has been teaching in the Chemical Engineering Department at Worcester Polytechnic Institute since 1986. His teaching interests include thermodynamics, separations processes and unit operations laboratory. He conducts research in separations processes and teaching and learning, particularly in combining laboratory experience
c American Society for Engineering Education, 2015 Resistance is Futile: A New Collaborative Laboratory Game Based Lab to Teach Basic Circuit Concepts AbstractIn recent years, gamification of education has proven to be an effective paradigm in modernpedagogy. Following the success their previous work "Sector Vector”, the authors now present anew game-based laboratory to highlight the manipulation and calculation of resistors in circuits.In Game of Ohms [1] the lesson of electrical resistance is delivered as an interactive exercisebuilding an intricate circuit. As the game progresses, students are forced to make short and longterm plans to modify an evolving circuit which
development, program evaluation, multidis- ciplinary research, and conceptual change. Nadelson uses his over 20 years of high school and college math, science, computer science, and engineering teaching to frame his research on STEM teaching and learning. Nadelson brings a unique perspective of research, bridging experience with practice and theory to explore a range of interests in STEM teaching and learning.Mrs. Anne Seifert, Idaho National Laboratory Anne Seifert EdS INL K-12 STEM Coordinator Idaho i-STEM Coordinator Anne Seifert is the Idaho National Laboratory STEM Coordinator and founder and executive director of the i-STEM network. She holds a BS degree in elementary education, an MA in Education Administration
Paper ID #12940The Effectiveness of In-Class, Hands-On Learning vs. Lecture for TeachingAbout Shell and Tube Heat ExchangersDr. Paul B Golter, Washington State University Paul B. Golter obtained an MS and PhD Washington State University and made the switch from Instruc- tional Laboratory Supervisor to Post-Doctoral Research Associate on an engineering education project. His research area has been engineering education, specifically around the development and assessment of technologies to bring fluid mechanics and heat transfer laboratory experiences into the classroom.Prof. Bernard J. Van Wie, Washington State University
Paper ID #12496Test Bed for a Cyber-Physical System (CPS) Based on Integration of Ad-vanced Power Laboratory and eXtensible Messaging and Presence Protocol(XMPP)Dr. Ilya Y. Grinberg, Buffalo State College llya Grinberg graduated from the Lviv Polytechnic Institute (Lviv, Ukraine) with an M.S in E.E. and earned a Ph.D. degree from the Moscow Institute of Civil Engineering (Moscow, Russia). He has over 40 years of experience in design and consulting in the field of power distribution systems and design automation. He has over 40 published papers. Currently he is professor of engineering technology at SUNY Buffalo State. His
Paper ID #11226USACE’S COASTAL ENGINEERING CERTIFICATE PROGRAMMr. Jose E. Sanchez P.E., Coastal and Hydraulics Laboratory Mr. Jos´e E. S´anchez is the Director of the Coastal and Hydraulics Laboratory (CHL) at the U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, MS. ERDC R&D supports the Depart- ment of Defense and other federal agencies in military and civilian projects. Principal research mission areas include Warfighter support, installations, environment, water resources, and information technology. CHL is the national laboratory for the specialized professional field of coastal and
, however, is reduced due to limited interaction, delayingfeedback until after an exam, and tediousness of many repeating laboratory sessions.We are implementing steps to teach manufacturing laboratory to a large class of 250 studentseach semester. Complementary online instructional videos and class lectures, Clickerassessment, regular grade feedback, and cellular manufacturing laboratory exercises are utilized.Laboratory exercises are grouped into cellulars to save resources, space, and are synchronizedwith relevant lectures to facilitate students’ understanding. For each laboratory exercise, theoverall lab objectives are covered in class, but details of tooling and machine operation areshown using online professional videos so that students can
prototypes of these systems for laboratory exercises. This simplicity is useful because itallows the instructor to focus on essential understanding of the course material withoutunnecessary complexity; however, such simplicity leads students to wonder how to extend theconcepts to more complex systems. Students also have difficulty visualizing the solutions to thedifferential equations that are ubiquitous in such courses 1 . Physical laboratories can help withstudent visualization, but there are practical limits to the number and variety of physicallaboratories that can be given in a course.Recent trends have shown the feasibility of teaching laboratory skills in the area of dynamicsystems and controls through the use of virtual and remote laboratory
under AC machines while the DC portion covers separately excited, shunt, series, andcompound DC machines. Effective teaching of this course requires the development of appropriatelaboratory experiments to show students how to practically implement the theories covered in theclassroom.There were no standard laboratory experiments for the course prior to 2010 when the first authorjoined the Department. Based on industry and prior teaching experience, he developed, eight laboratoryexperiments for the course. The labs together with the class notes developed for the course were sent tosenior faculty from within and outside IPFW for review. The feedbacks was very positive and encouraging.This paper highlights the laboratory experiments developed for
Design in Mechanical Engineering Laboratories,” Paper no. ASEE AC 2009-2209, ASEE Annual Conference and Exposition, Austin, Texas, June 14-17, 2009.7. Russell, I.J., W.D. Hendricson, and R.J. Hervert. “Effects of lecture information density on medical student achievement”. Journal of Medical Education ,Vol. 59, No. 1l, 1984, pp. 881-89.8. Bland, M. , Saunders, G. and Kreps, Frisch J, “ In defense of the Lecture,” J. Coll. Sci, Teach, Vol. 37, No. 2, 2007, pp. 10-13. Page 26.1341.8
physically separated into two rooms sothat they could not communicate directly with each other but could do so only by text-chattingwithin the virtual laboratory environment. A teaching assistant was present in each room to helpthe students.In order to evaluate the usability of this game engine-based laboratory, a data set containing thestudents’ videogame playing background and a game log, which tracks the students’ activities,were collected and analyzed. The result shows that all students were able to complete thelaboratories regardless of their prior videogame playing experience. Also, it was discovered thatfrom the students’ laboratory operation perspective, most students made mistakes beforecompleting all tasks. From a collaboration perspective
Paper ID #12333Visual Communication Learning through Peer Design Critiques: Engineer-ing Communication Across DivisionsDr. Alyssa Catherine Taylor, University of Washington Alyssa C. Taylor is a lecturer in the Department of Bioengineering at the University of Washington. She received a B.S. in biological systems engineering at the University of California, Davis, and a Ph.D. in biomedical engineering at the University of Virginia. Taylor’s teaching activities are focused on develop- ing and teaching core introductory courses and technical labs for bioengineering undergraduates, as well as coordinating the capstone design
analyzing and thereby assessing howdifferent methods used in a flipped classroom setting will impact student-learning effectiveness.The study compares flipped classroom instruction to a traditional teaching method which is usedas a reference for control study. Data gathered for the analysis is based on a non-biaseduniformly distributed lab setting focused on using smart materials to determine the vibrationfrequency of a cantilever beam. The lab setup is a part of a Green Energy Materials &Engineering course offered in the summer 2014 semester. This class introduced students to theconcepts of Green Manufacturing, Green Technologies in industries, and Fabricating advancedGreen Energy devices. The framework used for gathering unbiased data
Mechanical and Industrial Engineering at the University of Toronto for his work characterizing the motion and mixing of droplets in Digital Microfluidic Devices. He continued as a Postdoctoral Fellow at the University of Toronto where he focused on the design and commercialization of a point of care Digital Microfluidic device. During this time, Dr. Schertzer was also a sessional lecturer at Ryerson University (Toronto, ON) where he taught (1) Integrated Manufacturing and (2) Design of BioMEMS. Since joining RIT, Dr. Schertzer has had the opportunity to teach (1) Thermodynamics I, (2) Engineering Measurements Labo- ratory, and (3) Laboratory Applications in Mechatronics.Dr. Patricia Iglesias, Rochester Institute of
. Page 26.1464.1 c American Society for Engineering Education, 2015 “Teaching an Electrical Circuits Course Online”AbstractDue to the increased demand for MOOCs, online, flipped, and hybrid courses, it is becomingmore important to identify techniques to also teach engineering courses virtually withoutcompromising standards. This paper will present a comparison of teaching an electric systemscourse for non-majors online and in a face to face classroom. It will provide a motivation forthis transition and examine the related literature for teaching engineering courses online. It willalso detail the challenges and lessons learned in transitioning an engineering course with anintegral laboratory
Paper ID #12686A Multidisciplinary Undergraduate Nanotechnology Education Program withIntegrated Laboratory ExperienceDr. Priscilla J Hill, Mississippi State University Priscilla Hill is currently an Associate Professor in the Dave C. Swalm School of Chemical Engineering at Mississippi State University. She has research interests in crystallization, particle technology, population balance modeling, and process synthesis. Her teaching interests include particle technology, nanotechnol- ogy, and separations.Prof. Yaroslav Koshka, Mississippi State UniversityDr. Tonya W. Stone, Mississippi State University Tonya
thismultidisciplinary course. Assessment data from over 150 online and onsite students, both incomputer science and engineering programs, showed that teaching evaluation scores were verysimilar in range and mean, regardless of class mode or student program. In fact, the highest mean Page 26.229.14score for the student perception of teaching was 4.3/5 in online courses, showing thatmultidisciplinary, laboratory-based engineering courses can be successfully taught online withengagement between professors and students.Bibliography[1] Sheehy, K. (2013) Online Course Enrollment Climbs for 10th Straight Year. US News & World Report.Retrieved on 2/2/2015 from http
inpre-engineering do not complete their degree2,3. To improve engineering learning effectiveness, alaboratory experience is highly beneficial; it reinforces the material comprehension,complements the theory, and provides an active, interactive learning. However, issues such ashigh cost and high credit-hour engineering curricula have resulted in elimination of many of theengineering teaching laboratories, especially at the sophomore level. Our project goal was toimprove student success rate by providing them a set of virtual experiments that we develop toadequately simulate the physical laboratory.Guiding Principles in Developing the Virtual Laboratory: 1. The virtual laboratory modules must mimic reality and the learning experience in the
Paper ID #12614Results & Lessons Learned from a Chemical Engineering Freshman DesignLaboratoryProf. Anthony Edward Butterfield, University of Utah Anthony Butterfield is an Assistant Professor (Lecturing) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory and freshman design laboratory. His research interests focus on undergraduate education, targeted drug delivery, photobioreactor design, and
Paper ID #12112Creating an Experimental Structural Dynamics Laboratory on a Shoe-stringBudgetDr. Peter Laursen P.E., California Polytechnic State University Dr. Peter Laursen, P.E., is an Associate Professor of Architectural Engineering at the California Polytech- nic State University, San Luis Obispo (Cal Poly) where he teaches courses on the analysis and design of structural systems including laboratory courses.Dr. Cole C McDaniel, California Polytechnic State University Dr. Cole McDaniel, P.E., is a Professor of Architectural Engineering at the California Polytechnic State University, San Luis Obispo (Cal Poly) where
because of safetyissues, expenses, and lack of qualified teaching assistants. This paper presents the planning anddevelopment of a web-based application that can simulate a virtual laboratory for electricmachines. This Virtual Power Laboratory 1 (VPL) is developed on a universal web-basedplatform that can be accessed anywhere by most mobile devices and modern computers. As aproof of concept, nine virtual experiments have been developed for DC motors and generators.Machine concepts are summarized using text, 2D and 3D graphics as well as multimediaanimation. The animated graphical user interface (GUI) plays an important role as it enablesstudents to review and retain basic concepts by building a bridge from the virtual environment tothe real
Paper ID #11584Understanding additive manufacturing part performance through modelingand laboratory experimentsMiss Ying Zhang, Texas A&M University Ying Zhang is a fourth year PhD student in Mechanical Engineering department at Texas A&M University, working under the supervision of Dr. Jhywen Wang. Currently, she is a graduate teaching assistant for Strength of Material lab in Engineering Technology Industrial Distribution department. She has been a TA for this class since spring 2013. Her doctoral research is focused on fabrication, Finite Element simulation, and mechanical modeling of layer-by-layer
Professor David Lowe is Associate Dean (Education) and Professor of Software Engineering in the Fac- ulty of Engineering and Information Technologies at The University of Sydney. Before this he was a Director of the Centre for Real-Time Information Networks (CRIN) - a designated research strength at the University of Technology, Sydney focused on blending embedded systems and telecommunications in addressing real-world problems. He is also the CEO of the not-for-profit organisation The LabShare Institute, and past President of the Global Online Laboratory Consortium. Professor Lowe has published widely during his more than 20 year teaching career, including three textbooks
the Information Technology field including various healthcare providers and AT&T. Currently, he is a Senior Network Engineer within the healthcare industry in Atlanta, GA.Dr. Walter E Thain, Southern Polytechnic College of Engr and Engr Tech Walter E. Thain received his BS, MS, and Ph.D. degrees in Electrical Engineering from the Georgia In- stitute of Technology. He is an Associate Professor in Electrical and Computer Engineering Technology at Southern Polytechnic State University and teaches courses in voice and data networking, analog and RF electronics, and communications systems. Research interests include voice and data network design and management, network security, RF communication systems, RF and
Paper ID #12757Cost-Effective, Inquiry-guided Introductory Biomaterials Laboratory for Un-dergraduatesDr. Casey Jane Ankeny, Arizona State University Casey J. Ankeny, PhD is lecturer in the School of Biological and Health Systems Engineering at Ari- zona State University. Casey received her bachelor’s degree in Biomedical Engineering from the Univer- sity of Virginia in 2006 and her doctorate degree in Biomedical Engineering from Georgia Institute of Technology and Emory University in 2012 where she studied the role of shear stress in aortic valve dis- ease. Currently, she is investigating cyber-based student engagement
Paper ID #14182Application-based learning, a nuclear experimental laboratory in a field en-vironmentLt. Col. Robert Prins, United States Military Academy Lieutenant Colonel Robert Prins is an assistant professor in the United States Military Academy Depart- ment of Physics and Nuclear Engineering. LTC Prins teaches both Radiation Shielding and Instrumenta- tion and Radiological Safety. LTC Prins’ role in the Army is that of a Nuclear Medical Science Officer.Prof. Bryndol A. Sones, U.S. Military Academy Colonel Bryndol Sones directs the Nuclear Engineering Program at West Point. He has a Ph.D. in Nu- clear Engineering from
. Banzhaf, PE, Digital Oscilloscopes: Powerful Tools for EET Laboratories. Proceedings of the 2003 AmericanSociety for Engineering Education Annual Conference & Exposition.3 J. A. Gumaer, Teaching Data Acquisition Using Laptop Computers. Proceedings of the 2004 American Society forEngineering Education Annual Conference & Exposition.4 K. Stair and B. Crist, Jr. Using Hands-on Laboratory Experiences to Underscore Concepts and to CreateExcitement About Materials. Proceedings of the 2006 American Society for Engineering Education AnnualConference & Exposition.5 T. F. Schubert, Jr., S. M. Lord, D. M. Tawy, and S. D. Alsaialy. A LabVIEW Interface for Transistor ParameterAnalysis: An Opportunity to Explore the Utility of Computer Interfaces
techniques that reduce or eliminate lecture and replace it Page 26.150.2with active learning methods.5,6 Often the focus of the active learning strategies has been tomove away from methods that lead to students memorizing facts and mimicking solutions andtoward developing conceptual knowledge.7 Other studies have looked at changing/enhancing theexperimental/laboratory component.6,8Physics education research has also focused on developing quantitative methods that can be usedto assess the effectiveness of the traditional teaching structure as well as the impact of newteaching strategies. Those efforts led to the development of a number of