Asee peer logo
Displaying results 1 - 30 of 94 in total
Conference Session
K-12 & Pre-College Engineering Division: Fundamental & Research-to-Practice: K-12 Engineering Resources: Best Practices in Curriculum Design (Part 2)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Mary Ann Jacobs, Manhattan College; Kathleen Christal Mancuso, Manhattan College ; Zahra Shahbazi, Manhattan College; Alexandra Emma Lehnes, Manhattan College; Anthony Scotti, Manhattan College
Tagged Divisions
Pre-College Engineering Education Division
Paper ID #16997Hands-On STEM Lesson Plans Developed through Engineering Faculty andSTEM Teacher Collaboration (Evaluation)Sr. Mary Ann Jacobs, Manhattan College Mary Ann Jacobs, scc is an assistant professor in the School of Education. She prepares secondary teacher candidates in all content areas through her courses in secondary pedagogy. Her areas of interest include STEM education, brain compatible strategies, and action research in the classroom.Ms. Kathleen Christal Mancuso , Manhattan College Kathleen Mancuso is a Secondary Education Major with a concentration in Chemistry at Manhattan Col- lege located in Riverdale
Conference Session
K-12 & Pre-College Engineering Division: Fundamental & Research-to-Practice: K-12 Engineering Resources: Best Practices in Curriculum Design (Part 2)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Louis Nadelson, Utah State University; Christina Marie Sias, Utah State University; Anne Seifert, Idaho National Laboratory
Tagged Divisions
Pre-College Engineering Education Division
willingness to adopt innovation by using teacher createdlesson plans as a source of data.In our prior work, we have empirically documented a number of potential indicators that areassociated with teacher potential to adopt innovations. Our goal for this project was to gainsome foundational understanding of how teachers plan to teach engineering, and their attentionto implementing other educational innovations. To achieve this goal, we analyzed a sample of42 teacher created lesson plans drawn from a larger sample of over 300 STEM related lessonplans. We found that the teachers communicated incomplete understanding of engineeringpractices and design, yet created plans that shared the responsibility for assignment decisionswith the students. We also
Conference Session
K-12 & Pre-College Engineering Division: Evaluation: Exploring the Impact of Summer Programs on K-12 Youth (Part 1)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Michael T. Frye, University of the Incarnate Word; Sreerenjini C. Nair, University of the Incarnate Word; Angela Meyer, Rawlinson MS
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
camp organized and run by the Autonomous Vehicle Systems (AVS) ResearchLaboratory at the University of the Incarnate Word for middle school girls during the week ofJuly 6 to July 10, 2015. The primary goal of the camp was to introduce more females into thefield of engineering through robotic projects and competitions, guest speakers, and field trips.The camp had an additional emphasis on providing learning and research opportunities for girlsfrom underrepresented communities. miniGEMS was the first free camp in San Antonio, TX formiddle school girls with a special focus on engineering. Despite being held for the first time,there were 25 middle school students from various school districts in San Antonio. The campwas planned, coordinated, and
Conference Session
K-12 & Pre-College Engineering Division: Research to Practice: K-12 Engineering Resources: Best Practices in Curriculum Design (Part 1)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Jonathan D. Hertel, Museum of Science; Christine M. Cunningham, Museum of Science; Gregory John Kelly, Pennsylvania State University; Cathy P. Lachapelle, Museum of Science
Tagged Divisions
Pre-College Engineering Education Division
building to a design challenge in which studentsexperience the arc of the engineering design process and develop a technology. The efficacystudy included four units: • An Alarming Idea: Designing Alarm Circuits: This unit introduces students to the field of electrical engineering as they incorporate their understandings of electricity to design alarm circuits. During the design challenge, groups are tasked with developing a circuit that triggers an alarm when a trough for feeding a baby lamb is empty. Students plan a circuit design, test it themselves, and develop a schematic diagram. They pass it to another group in the class to construct and test. Based on the results, they improve their design10
Conference Session
K-12 & Pre-College Engineering Division Poster Session: Works in Progress
Collection
2016 ASEE Annual Conference & Exposition
Authors
Nicholas Robert Stambach, Colorado School of Mines; Barbara M. Moskal, Colorado School of Mines
Tagged Divisions
Pre-College Engineering Education Division
) have been created in a flexible manner that supports theiradaption to multiple venues and grade levels. The design presented here simplifies the lessoncreation process while supporting a broad dissemination to pre-college teachers and students.The importance of this effort is reflected in the research findings that many young students donot know what engineers do.3 The proposed approach supports faculty and graduate students inmaximizing the potential impact of their outreach efforts, reaching a broader population of youngstudents. Two specific lesson plans are presented, Mining Coal and Bridge Building. These lessonswere selected because they illustrate flexibility in design and our initial efforts at embeddingsuch flexibility
Conference Session
K-12 & Pre-College Engineering Division: Evaluation: Exploring the Impact of Programs & Professional Development for K-12 Teachers
Collection
2016 ASEE Annual Conference & Exposition
Authors
Kathleen A. Harper, The Ohio State University
Tagged Divisions
Pre-College Engineering Education Division
first part, the model development, students are guided (usuallythrough carefully crafted laboratory experiences) to develop concepts and gain familiarity withthe associated representations for those concepts. The students become accustomed to referringto their laboratory data as the authority on scientific relationships. In the deployment phase thatfollows, students apply the model to a variety of situations and test the limits of the model, oftenthrough problem solving and sometimes via lab practica. Incorporating engineering applicationsin the deployment provides the ideal structure for seeing the relationship between fundamentalscientific understanding and well-planned engineering.The Ohio State University has offered a series of Modeling
Conference Session
K-12 & Pre-College Engineering Division: Addressing the NGSS: Supporting K12 Teachers in Engineering Pedagogy, Engineering Science, Careers, and Technical Pathways
Collection
2016 ASEE Annual Conference & Exposition
Authors
Michael E. Edley, Drexel University; Stephanie Owens, Science Leadership Academy; Jessica S. Ward, Drexel University; Adam K. Fontecchio, Drexel University
Tagged Divisions
Pre-College Engineering Education Division
successfully coordinated with multiple faculty members in the submission of approximately 600 grant proposals, including co-writing, editing and serving as the Program Manager for 5 awarded STEM edu- cation grants totaling more than $12M. She has collaborated with University offices and College faculty and professional staff in the facilitation of recruitment strategies to increase the quality and quantity of undergraduate and graduate enrollment, including supervising the planning and implementation of Open House and other recruitment events. Jessica now manages the day-to-day operations of the DragonsTeach program, including supporting the development of programs of study, student recruitment, fundraising and grant
Conference Session
K-12 & Pre-College Engineering Division: Engineering Alignment with Core Curriculum (Physics)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Pamalee A. Brady, California Polytechnic State University - San Luis Obispo; Jennifer H. Rushing, Central Coast New Tech High
Tagged Divisions
Engineering Physics & Physics, Pre-College Engineering Education Division
 steps elaborated on below:   ● Ask: What is the problem?  What have others done to solve this?  What are the  constraints?  ● Imagine: What are possible solutions?  What’s the advantage of one over another?  Choose the best one.  ● Plan: What’s needed to execute the chosen solution?  What additional skills, tools or  materials are needed?  Get the needed skills and materials.  ● Create: Build a model according to the plan and test it systematically.  ● Improve: How could the design be improved?  Redesign and retest. This EDP model is cast as a cyclic process, with progress going in either direction in the cycle and sometimes shortcutting from one step to another, as is consistent with the iterative nature of
Conference Session
K-12 & Pre-College Engineering Division: Engineering Alignment with Core Curriculum (Physics)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Meera N.K. Singh PEng, University of Calgary; Qiao Sun, University of Calgary; Cassy M. Weber, Science Alberta Foundation (o/a MindFuel)
Tagged Topics
Diversity
Tagged Divisions
Engineering Physics & Physics, Pre-College Engineering Education Division
integrated through teacher views that produce dynamic project-basedlesson plans. The system encourages an interdisciplinary approach that requires studentsto draw on multiple subject areas simultaneously to solve real world problems.This paper presents the results of the initial evaluation of the DLMS. After providing thedetails regarding its infrastructure, a critical evaluation of the platform and how itsupports both teachers and students in a balanced approach to learning is presented. Thisevaluation draws upon the Felder-Silverman Learning Style Model (FSLM) in thatelements of the DLSM are evaluated within the context of the models four dimensions.The initial results of a pilot project aimed at evaluating its effectiveness in schools
Conference Session
K-12 & Pre-College Engineering Division: Curriculum and Resource Exchange
Collection
2016 ASEE Annual Conference & Exposition
Authors
Krystal S. Corbett, Cyber Innovation Center; Sara Hahler, Louisiana Tech University
Tagged Divisions
Pre-College Engineering Education Division
electrical components like DC motors, vibration (8th Grade) motors, LEDs, resistors, and switches to design and build an interactive electronic game. Additionally, they Apply have to develop a business plan for bringing their game to market. Research Topics/Projects – atoms, free electrons, current, voltage, elements, periodic table, proportions, conductors, insulators, build circuits, power sources, LEDs, resistors, switches, motors, games types, game design, develop mind maps, business plan, and cost analysis. Curricula Access All curricula materials are hosted online for ease of distribution to teachers across the country. Teachers and other K12 personnel
Conference Session
K-12 & Pre-College Engineering Division: Fundamental; K-12 Students & Engineering Division: Fundamental; K-12 Students & Engineering Design Practices: Best Paper Session
Collection
2016 ASEE Annual Conference & Exposition
Authors
Ninger Zhou, Purdue University; Tarun Thomas George, Purdue University; Joran W. Booth, Purdue University; Jeffrey Alperovich, Purdue University; Senthil Chandrasegaran, Purdue University; Nielsen L. Pereira, Purdue University; Jeffrey David Tew Ph.D.; Devaatta Nadgukar Kulkaerni; Karthik Ramani
Tagged Divisions
Pre-College Engineering Education Division
, through having students work on tasks that are enjoyable, andsocial persuasion, through instructors’ constant verbal comments that acknowledge students’progress and improvement.The Development of Design ConceptsIn alignment with the societal emphasis on nurturing next generation makers and tinkerers, it isimperative to teach students design concepts from an early age. One of the major design conceptcomponents is design thinking, which is the thinking process generally adopted by engineeringdesigners in approaching design problems11. Effective design thinking has been commonlyqualified as going through the process of planning, building, and testing, or in more details,going through the cycle of identifying problems, building prototypes
Conference Session
K-12 & Pre-College Engineering Division: Research-to-Practice: Principles of K-12 Engineering Education and Practice
Collection
2016 ASEE Annual Conference & Exposition
Authors
Malinda S. Zarske, University of Colorado - Boulder; Maia Lisa Vadeen, University of Colorado - Boulder; Janet Y. Tsai, University of Colorado - Boulder; Jacquelyn F. Sullivan Ph.D. , University of Colorado - Boulder; Denise W. Carlson, University of Colorado - Boulder
Tagged Divisions
Pre-College Engineering Education Division
sophomores and one first-year student.Administered via Qualtrics® Research Suite online survey software, the full survey consisted of14 items, including multiple choice (e.g., yes/no) and text entry (see all 14 questions inAppendix A). Three survey questions queried strengths of the CU Teach Engineering programand career plans, while five questions probed perceived differences between engineering andeducation programs and barriers to simultaneously navigating both disciplines. Other questionsasked students to briefly describe the use of engineering skills in education courses, as well asthe use of teaching skills from education courses in undergraduate engineering courses.To supplement the quantitative findings with a qualitative perspective
Conference Session
K-12 & Pre-College Engineering Division: Student-Centered Activities and Maker Spaces in Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Claudio da Rocha Brito, Science and Education Research Council; Melany M. Ciampi, Safety, Health, and Environment Research Organization; Rosa Maria Castro Fernandes Vasconcelos, Universidade de Minho; Luis Alfredo Martins Amaral P.E., Universidade de Minho; Victor F. A. Barros Ing.-Paed IGIP, Science and Education Research Council
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
World Council on System Engineering and Information Technology (WCSEIT), Vice President of Safety Health and Environment Research Organization (SHERO) and Vice President of World Council on Communi- cation and Arts (WCCA). He is Chairman of Working Group ”Ingenieurp¨adagogik im Internationalen Kontext” since 2002, Member of International Monitoring Committee in IGIP since 2004, Member of Strategic Planning Committee of Education Society of the Institute of Electrical and Electronics Engi- neers, Inc (IEEE-EdSoc) since 2009, Board Member of ”Global Council on Manufacturing and Manage- ment” (GCMM) since 2004 and Director of Brazilian Network of Engineering (RBE) since 1998. He is also Member of Board of Governors
Conference Session
K-12 & Pre-College Engineering Division: Fundemental and Evaluation: Embedded Programs in Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Corey A. Mathis, Purdue University, West Lafayette; Emilie A. Siverling, Purdue University, West Lafayette; Aran W. Glancy, University of Minnesota, Twin Cities; Siddika Selcen Guzey, Purdue University, West Lafayette; Tamara J. Moore, Purdue University, West Lafayette
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
, Plan, Implement, Test andEvaluate. Instances identified as EBR were coded based on where they occurred within theProcess of Design. Given that the focus of this study was just the engineering design challengeportion of the unit, instances of EBR that occurred during the Process of Design were given oneof three codes: Plan, Implement & Test, or Evaluate. Implement and Test were combined becausethese steps were difficult to distinguish as they were done concurrently by students due to thenature of the design challenge. The iteration aspect of the design process was also accounted for;these three codes were also noted as occurring in the initial design phase or within the redesignphase.The third step was to take a close look at how students
Conference Session
K-12 & Pre-College Engineering Division: Fundamental: K-12 Student Beliefs, Motivation, and Self Efficacy
Collection
2016 ASEE Annual Conference & Exposition
Authors
Brenda Capobianco, Purdue University, West Lafayette; James D. Lehman, Purdue University; Qiming Huang, Purdue University; Chell Nyquist, Purdue University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
appearing categories, concepts, and events helped theresearch team construct assertions based on the events leading up to the teachers’ conceptions ofengineering design, plans for integrating engineering design-based tasks, and the actualimplementation of engineering design tasks.Classroom observations. The aim of classroom observations was to observe and characterizedesign-informed pedagogical methods employed by SLED teachers. Initially, members of theresearch team conducted informal classroom observations that included open field notes focusingon the teacher; specifically, his/her instructional practices exhibited during a given lesson. Basedon early field notes and a review of existing classroom observational protocols (e.g., RTOP,STAMM, and
Conference Session
K-12 & Pre-College Engineering Division: Curriculum and Resource Exchange
Collection
2016 ASEE Annual Conference & Exposition
Authors
Larry G. Richards, University of Virginia
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
. Over 60 ETKs have been developed to date; about 20 have been widely distributed and used in schools and summer programs. We have adapted ETKs to both elementary and high school audiences. To learn more, please visit our Facebook page (https://www.facebook.com/theengineersway/) or contact us at lgr@virginia.edu to gain access to the complete lessons plans. Trash Sliders was
Conference Session
K-12 & Pre-College Engineering Division Evaluation: Exploring the Impact of Summer Programs on K-12 Youth (Part 2)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Victoria G. Bill, New York University; Yosef Skolnick, Cooper Union
Tagged Divisions
Pre-College Engineering Education Division
, 95% 107, 88% Yes No Yes No Figure 5: Student Self-Assessment of Project UnderstandingThe response to the second and third questions on the exit survey assessed student interest andconfidence in their ability to major in science or engineering. The percentage of students whoresponded that they plan to study science or engineering, if they go to college, was highest in theMakerspace class. This is shown in Figure 6, and responses for the other courses ranged from59% – 93%. However, the next question on the survey (“did summer change their mind”)impacts the interpretation of those responses and is shown in Figure 7. A
Conference Session
K-12 & Pre-College Engineering Division: Evaluation: Exploring the Impact of Programs & Professional Development for K-12 Teachers
Collection
2016 ASEE Annual Conference & Exposition
Authors
Andrea Carneal Burrows Borowczak, University of Wyoming; Mike Borowczak, Erebus Labs
Tagged Divisions
Pre-College Engineering Education Division
activity stations were successfully included in the Marchworkshop, and the teachers’ self-reported learning CS and engineering content as well as gainingconfidence in CS use. Over half (n=6) of the 11 participants planned to incorporate the NetLogosimulations, and almost as many (n=5) identified the Robot Turtles board game and the What iscoding? post-it activity as new ideas that they planned to use with their K-12 students. Thoseparticipants who offered explanations mentioned that these activities helped make lessons “moremeaningful” for students by connecting ideas with games, engaging students “to visually see andexperience” coding, helping them understand “how a computer works,” and “how and why wewould use code.” Other individuals mentioned
Conference Session
K-12 & Pre-College Engineering Division: Research-to-Practice: Principles of K-12 Engineering Education and Practice
Collection
2016 ASEE Annual Conference & Exposition
Authors
Pamalee A. Brady, California Polytechnic State University - San Luis Obispo; John Chen, California Polytechnic State University - San Luis Obispo; Danielle Champney, California Polytechnic State University - San Luis Obispo
Tagged Divisions
Pre-College Engineering Education Division
steps which begin with the identification of the problem,followed by postulating and evaluating possible solutions. Engineering is Elementary3 expressesthese steps as Ask, Imagine, Plan, Create, Improve, Figure 1.Figure 1. Engineering Design Process Figure 2. Text of the first Design Challenge.Within the context of the collaborative work of university education and engineering faculty anda local school district on an ongoing grant focused on improving teacher preparation forapplication of common Core standards and Next Generation Science standards, a liberal studiescourse was designed to introduce undergraduate students interested in entering the teachingprofession with engineering design experience. While courses for non-engineering
Conference Session
K-12 & Pre-College Engineering Division Poster Session: Works in Progress
Collection
2016 ASEE Annual Conference & Exposition
Authors
Tameshia Ballard Baldwin, North Carolina State University; Angelitha Daniel, North Carolina State University; Braska Williams Jr, North Carolina State University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
going offof the track and not having used any parts of a commercially available hovercraft in the design.The hovercraft could only be powered by a battery. For the research component, students wereasked to review the literature on the history of hovercrafts and provide a brief summary of themajor milestones in their evolution.Program ImplementationA total of 16 middle (grades 7-8) and 20 high school (grades 9-12) students participated in theengineering design course over a four month period. The high school class consisted of 70% malesand 30% females while the middle school class was composed of 69% males and 31% females.The course began with an introduction of the five steps (ask, imagine, plan, create and improve)involved in the EDP. Each
Conference Session
K-12 & Pre-College Engineering Division: Professional Development for Students and Teachers
Collection
2016 ASEE Annual Conference & Exposition
Authors
Zahra Shahbazi, Manhattan College; Alexandra Emma Lehnes, Manhattan College; Mary Ann Jacobs, Manhattan College; Kathleen Christal Mancuso, Manhattan College
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
participants benefit from education participants’ knowledge in developinglesson plans, teaching techniques and classroom management skills. Engineering and education facultywork together to advise the students from both schools. This collaborative environment creates a mutuallearning atmosphere for both students and faculty.7. Provide opportunity to learn about engineering for education studentsThe release of the Next Generation Science Standards in April 2013 has included engineering in K-12curriculum in NYS [15]. However education majors have no education on engineering topics and are notprepared to teach engineering courses. This program provides a unique opportunity for education studentsto learn about engineering and learn how to incorporate
Conference Session
K-12 & Pre-College Engineering Division: Fundemental and Evaluation: Embedded Programs in Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Ibrahim Halil Yeter, Texas Tech University; Hansel Burley, Texas Tech University; Terrance Denard Youngblood, Texas Tech University; Casey Michael Williams, Texas Tech University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
Paper ID #16895Developing a Questionnaire and Evaluation Methods for a High School RocketProgramMr. Ibrahim Halil Yeter, Texas Tech University Ibrahim H. Yeter is currently a PhD candidate in the Curriculum and Instruction program at the College of Education, and at the same time, he is pursuing his Master’s degree in Petroleum Engineering at Texas Tech University. He is highly interested in conducting research within the Engineering Education frame- work. Mr. Yeter plans to graduate in December 2016 with both degrees and is looking forward to securing a teaching position within a research university and continuing his
Conference Session
K-12 & Pre-College Engineering Division: Fundemental and Evaluation: Embedded Programs in Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Te'Airra Monique Brown , Virginia Tech; Glenda D. Young Collins, Virginia Tech
Tagged Divisions
Pre-College Engineering Education Division
instructional component as it relates to the situativeframework; provide an explanation of how AR technology supports the instruction ofengineering concepts; and provide a more tangible view of instructional design using a fourthgrade lesson plan for teaching circuitry.Guidelines to Situating ARTable 1 summarizes the guidelines for integrating an AR application for teaching and learningelectrical engineering concepts. We propose that following this guide, engineering educators canwork with elementary teachers to incorporate AR into lesson plans to provide a more tangibleand engaging environment for the students. First, we will review the three principles thatsummarize situative learning theory and will form the basis for the guide as suggested
Conference Session
K-12 & Pre-College Engineering Division: Robotics in Pre-K-12 Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Saeedeh Ziaeefard, Michigan Technological University; Nina Mahmoudian, Michigan Technological University; Michele Miller, Michigan Technological University; Mo Rastgaar, Michigan Technological University
Tagged Divisions
Pre-College Engineering Education Division
standards rich incontent and practice that are coherent across disciplines.3 The NGSS (2013) indicates thatengineering must be a fundamental part of the new framework since students are required todevelop the capability to carry and transfer knowledge across science disciplines throughmodeling, planning, conducting investigations, analyzing and interpreting data, andconstructing explanations to demonstrate understanding of core science ideas. Students “mustbe able to apply scientific ideas to solve a design problem, taking into account possibleunanticipated effects”.3Our approach to broadening participation is based on what we know works to engage girls inengineering. We know that precollege and college design classes have a much higherpercentage
Conference Session
K-12 & Pre-College Engineering Division: Home, Parents, and Other Out-of-School Issues Related to K-12 and Pre-College Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Tamecia R. Jones, Purdue University, West Lafayette; Jean M. Trusedell, EPICS; William C. Oakes, Purdue University, West Lafayette; Monica E. Cardella, Purdue University, West Lafayette
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
for curriculum, pedagogy, and projects. Middle and high schools have historically facedchallenges introducing engineering into the curriculum in an inclusive and authentic manner.Because these students are still flexible about their career decisions3,4, programs that peakinterest can still influence students’ college and career plans. An inclusive approach could havesignificant impact on the diversity of the engineering workforce.A large public university implemented EPICS (Engineering Projects in Community Service) forundergraduates in 19955,6. The approach has been successful in preparing students professionallyas well as addressing compelling needs locally and globally. The program has also shown that itis an inclusive approach to
Conference Session
K-12 & Pre-College Engineering Division: Fundemental and Evaluation: Embedded Programs in Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Lelli Van Den Einde, University of California, San Diego; Heidi A. Tremayne, Earthquake Engineering Research Institute; Thalia Anagnos, San Jose State University; James Mallard, UC San Diego
Tagged Divisions
Pre-College Engineering Education Division
school buildings, updating curriculum toeducate students on natural hazards and risk reduction measures, and reviewing the condition ofall existing school buildings and mitigating documented vulnerabilities.As part of its strategic plan the Earthquake Engineering Research Institute (EERI) has committedto taking a leadership role in promoting earthquake safety in schools. EERI is a multidisciplinarynational society of nearly 3000 engineers, geoscientists, building officials, architects, planners,public officials, social scientists and students dedicated to advancing the science and practice ofearthquake engineering and reducing the impacts of earthquakes on society. EERI’s SchoolEarthquake Safety Initiative (SESI) aims to engage the EERI
Conference Session
K-12 & Pre-College Engineering Division: Fundamental & Research-to-Practice: K-12 Engineering Resources: Best Practices in Curriculum Design (Part 2)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Mohamad Musavi, University of Maine; Cary Edward James, University of Maine; Paige Elizabeth Brown, Bangor High School
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
to traditional values andtribal elders will improve perceptions of STEM as culturally relevant and supportive of the NativeAmerican community, consequently igniting students’ interest in STEM. Streams, brooks, rivers,and water resources have always been of great traditional and cultural value to Native Americansnot only as a means of subsistence but also for recreation. Therefore, the model presented in thispaper—to develop stormwater management and mitigation plans—is designed to attract studentsin Native American communities into STEM education. Stormwater is runoff water from rain or melting snow that drains across the landscape.Runoff flows off rooftops, pavement, bare soil, and lawns, picking up pollutants along the way. Itgathers
Conference Session
K-12 & Pre-College Engineering Division: Fundamental & Research-to-Practice: K-12 Engineering Resources: Best Practices in Curriculum Design (Part 2)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Cathy P. Lachapelle, Museum of Science; Christine M. Cunningham, Museum of Science
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
purposes.Tell Us More! What could you do next to Develop a plan to investigate Practice: Planning and Carrying Do_Nextmake sure your design actually works? whether the design idea would Out Investigations work.Do you think that the work you did for this Explain a variety of aspects of Crosscutting Concept: Influence Engineering?activity is engineering? Why or why not? engineering. of Science, Engineering, and Technology on Society and the Natural WorldPilot Testing the InstrumentDuring development of the
Conference Session
K-12 & Pre-College Engineering Division: Student Reflection, Self-Perception, Misconceptions, and Uncertainty
Collection
2016 ASEE Annual Conference & Exposition
Authors
Avneet Hira, Purdue University, West Lafayette; Morgan M. Hynes, Purdue University, West Lafayette
Tagged Divisions
Pre-College Engineering Education Division
implicitlearning.There has been little to no work done to understand how learners learn in Makerspaces, andto find or develop tools to assess this learning. In the recent ASEE conference Morocz et al.11 presented plans of measuring the impacts of a university makerspace “through engineeringdesign self-efficacy, retention in the engineering major; and idea generation ability".A study by the Maker Ed Open Portfolio Project 12 strengthens the promise of our proposal toemploy self-reflection to assess learning in Makerspaces. This work presents self-reporteddata by Makerspaces all over the United States about their alignment with nationaleducational initiatives. Most sites reported themselves as being aligned with STEM (94%)(Science, technology, engineering, and
Conference Session
K-12 & Pre-College Engineering Division: Evaluation: Impact of Curriculum for PreK-12 Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Marilyn Barger, Florida Advanced Technological Education Center of Excellence; Richard Gilbert, University of South Florida
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
. Utilizing a three-year Magnet School grant,DLJ established a Center for Mathematics and Engineering to developed and thenimplement its integrated, whole school curriculum with engineering as the core and theconnector. The results of this careful planning and meticulous attention to detailsproduced an elementary school environment that fosters student creative thinking withthe expectation of quantitative metrics to gauge that creativity. The merit of this totalemersion of engineering into an elementary curriculum is reflected in student scores onstandardized test as well as a plethora of awards and acknowledgements for the schoolincluding being named the top elementary STEM program in the nation by the 2015Future of Education Technology Conference