Paper ID #14813Digital Manufacturing Education: Implementation of an Integrated CAD/CAMWorkflow to Reduce the Difficulty of Using Complex Digital Fabrication ToolsMr. Eric Holloway, Purdue University, West Lafayette Eric Holloway currently serves as the Senior Director of Industry Research in the College of Engineering at Purdue University, where he focuses on industry research in the College of Engineering. From 2007-2013, Eric served as the Managing Director and the Director of Instructional Laboratories in the School of Engineering Education at Purdue University. As Director, he was in charge of the building and
encourage undergraduate students to consider graduate level studies 10. Jiang and Maoattempted to implement SDR based courses in minority institution 11. Wu et al developed anaffordable, evolvable, and expandable laboratory suite to allow different institutions to offerlaboratories in communications and networking courses 12. However, to the best of ourknowledge, there is no existing work that introduces cooperative transmit beamforming, the keytechnique in next-generation communication systems, with SDR to undergraduate electricalengineering students.To bridge the gap between the undergraduate communication systems education and theindustrial demands of entry-level electrical engineers with SDR and beamforming expertise, aneducational module has
classroom and laboratory setting, enhance thelearning process7,8.In the Department of Electrical and Computer Engineering Technology Department at FSC the digital design education is accomplished by a sequence of three courses: EET 105-Introduction to Digital Electronics, EET 223-Digital Electronics and EET 316-Digital Design.Each course is taught by various instructors, both from academia and industry. Annual meetingswith the Industrial Advisory Board provide continuous feedback regarding the curriculum andthe content of the EET and CET courses, including the digital design sequence of three courses.The first digital course in the sequence, Introduction to Digital Electronics, presents fundamentalconcepts of digital electronics, specifically
Paper ID #16239Attached Learning Model for First Digital System Design Course in ECE Pro-gramSeemein Shayesteh P.E., Indiana University Purdue University - Indianapolis Lecturer in the department of Electrical and Computer Engineering at Purdue School of Engineering at IndianapolisDr. Maher E. Rizkalla, Indiana University Purdue University - Indianapolis Dr. Maher E. Rizkalla: received his PhD from Case Western Reserve University in January 1985 in electrical engineering. From January 1985 until August 1986 was a research scientist at Argonne National Laboratory, Argonne, IL while he was a Visiting Assistant Professor at
a team. Although fundamental laboratories courses are provided to establish students’hands-on experiences and consolidate connection between theoretical background and practicalimplementation, students still have difficulties to incorporate multidisciplinary knowledge intosolving a real engineering problem in a more systematic way. Therefore, a one-year project-oriented capstone course, Special Topics in Mechanical and Electro-Mechanical Engineering,has been available at the junior year for undergraduate students in the Department of Mechanicaland Electro-Mechanical Engineering, National Sun Yat-Sen University (NSYSU), Taiwan.In 2003, Ministry of Education (MOE) of Taiwan (Republic of China) revealed the White Paperon Creative Education
. He is the author of numerous research and pedagogical articles in his areas of expertise.Prof. Sanjeev Arora, Fort Valley State University Dr. Arora holds a B.Sc. (Honors) and M.Sc. degree in Physics from University of Delhi, India, and a M.S. and Ph.D. degree in Physics from University of Delaware. Dr. Arora’s research interest is experimental atomic physics and he is well-versed in the use of the van de Graaff accelerator, scalars, MCAs, and other physics instrumentation. He has been instrumental in acquiring, through various grants, computers, and software for the physics laboratory at FVSU. Some of his funded grant proposals are as follows: 1) Establishing a Nuclear Science and Engineering Minor at Fort Valley
]. Simplylecturing about these steps is insufficient to give students the experience necessary to effectivelyiterate in teams. Failure is one of the main reasons for iteration, but is difficult to teach about.The ability to identify and assess failures or other reasons for iteration can only be properlylearned through hands-on experience. Previous studies have highlighted the ability to teach suchconcepts using hands-on activities such as model building and laboratory exercises. Lemons etal. showed that model building helped students generate ideas, make ties between concept andphysical object, and finally make the students more away of their process-based strategies [6].Mackenchnie and Buchanan have employed hands-on activities in a laboratory class using
Engineering. The Master Thesis was Blood Vessel Wall Permeability and Endothelial Cells Interconnectivity. In 2012, Dr. Benalla achieved his PhD from the Biomedical Engineering Department CCNY in Biomechanics. The PhD thesis was the Determination of the Lacunar- Canalicular Permeability of Human Cortical Bone Using Physiological Loading. After his PhD, Dr. Be- nalla worked as a research associate with the Biomechanics Laboratory in CCNY with a cooperation with the Orthopedic Department of Mount Sinai Hospital and the Graduate Center of New York. In addition to his research Dr. Benalla taught as Adjunct Assistant Professor in different Colleges in New York. The different colleges Dr. Benalla taught in are New York City
, properties, processing, and applications of polymers, composites, andemerging/alternate materials commonly used in industry. Problem solving skills are developedin the areas of selection, testing, and evaluation of materials and processes. Through ongoinginteractions in the laboratory, a group project, and in-class activities, communication skills areenhanced to prepare for industrial and professional expectations. To inculcate understanding ofthe need for self-directed lifelong learning into these primarily fresh high school graduates, asmall number of student-selected Professional Development Activities (PDAs) are embeddedinto the course. The purposes for implementing instructional innovations in this course areimproving students learning outcomes
student is introduced to the types oftransformers commonly used in power distribution networks. Standard configurations,construction and auxiliary equipment are introduced, along with typical maintenance procedures.A course in AC analysis (ET-113) is required before taking this course. Generally, the studentshave also taken an introduction to electrical power systems course (ET-180). The objective of thecourse is to provide the student with a solid foundation in the power and auxiliary transformersused in the electrical power industry today. State of the art testing equipment is used on donatedthree-phase and single-phase power transformers, voltage regulators, and instrumenttransformers. This equipment is either in the laboratory or in a mock
students to the different areas of engineering, including Mechanical,Industrial, Manufacturing, Electrical and Computer Engineering. The course is co-taught bymultiple instructors, from all the different disciplines. It is made up of short lecture sections andlonger laboratory activities. The main goal is to introduce the students to the basic principles,applications, and practical tools commonly used in the different fields. This paper presents aninnovative course development for the ECE component of this inter-disciplinary course. Thecourse offers effective, hands-on and practical activities to enhance the students’ learningexperiences. Another important feature of this course is that the students are presented withchallenges to exercise their
feedback role via an industrial advisory board.Quantity of CoverageOf the seventy institutions responding to the question, 68 indicated they offered at least onecourse identified as containing significant “process control”. Seven had more than one requiredcourse on the topic, and two reported coverage in electives in addition to a required course. Twoinstitutions indicated no coverage in a required course but that the topic was covered in electives.Institutions reported an average of 40 hours lecture, 10.8 hours simulation or problem laboratory,and 7.1 hours of experimental laboratory per course. When the subject was integrated into othercourses, the coverage was an average 18.8 hours lecture.Course DeliverablesFigure 2 shows the distribution of
other engineering schools at lowcost.3- USE of PEDAGOGICAL THEORY The authors believe in the model of hands-on laboratories and computer simulation as thebest suited method to attain the educational objectives and outcomes.Traditional pedagogical methods in engineering often favor lecture based teaching but theauthors believe in the model of hands-on laboratories and computer simulation as the best suitedmethod to attain the educational objectives and outcomes. This thinking and practice issupported by research that has focused on a hands-on, active learning approach to teachingengineering concepts [4, 5]. Active learning has long been believed to be an ideal form ofinstruction compared to a more passive approach to teaching particularly
department’s undergraduate Program Director and Chair of its Curriculum and Assessment Committee. c American Society for Engineering Education, 2016 Enhanced Radio Lab Experience Using ePortfoliosAbstractHistorically, the technical writing portion of our electrical engineering program’s required corecourse RF Systems Laboratory has been fulfilled using bi-weekly memos. Now, however, the labutilizes eportfolios to fulfill the technical writing requirement. The primary goal of the decisionto switch from memos to eportfolios was to improve the learning outcomes of the students byencouraging them to use reflective writing to reinforce what they learned in the lab. Additionally,the eportfolio format allows
Paper ID #14778Planning and Assessment of a Workshop on Undergraduate Education in Bio-metric SystemsDr. Ravi P. Ramachandran, Rowan University Ravi P. Ramachandran received the B. Eng degree (with great distinction) from Concordia University in 1984, the M. Eng degree from McGill University in 1986 and the Ph.D. degree from McGill University in 1990. From October 1990 to December 1992, he worked at the Speech Research Department at AT&T Bell Laboratories. From January 1993 to August 1997, he was a Research Assistant Professor at Rutgers University. He was also a Senior Speech Scientist at T-Netix from July 1996 to
engineering for sensing applications.Dr. Pamela Obiomon, Prairie View A&M University Pamela Obiomon received a BS degree in electrical engineering from the University of Texas, Arlington TX, in 1991, a MS in engineering degree from Prairie View A&M University in 1993, and a PhD degree in electrical engineering from Texas A&M University in 2003. From 1998 to 1999, Dr. Obiomon served as an adjunct faculty at the Rochester Institute of Technology, in the Department of Micro-electronics in Rochester, New York. From 2000-2002, she was the lead data processing system hardware engineer in the Shuttle Avionics Integration Laboratory at the Johnson Space Center in Houston, TX. In 2003, she joined the Department of
use of flow control in aggressive engine inlet ducts. After graduation, Dr. Vaccaro held a lead engineering position with General Electric Aviation in Lynn, Massachusetts. There, he designed the fan and compressor sections of aircraft engines. He frequently returns to General Electric Aviation as a consultant. Currently, he is an Assistant Professor of Mechanical Engineering at Hofstra University in Hempstead, New York where he teaches Fluid Mechanics, Com- pressible Fluid Mechanics, Heat Transfer, Heat Transfer Laboratory, Aerodynamics, Measurements and Instrumentation Laboratory, and Senior Design in addition to conducting experimental aerodynamics un- dergraduate research projects.Dr. Kevin C. Craig, Hofstra
Virginia. He received the PhD degree in Physics from the State University of New York at Binghamton in 1980 and joined Bell Laboratories that same year. At Bell Laboratories he was Director of Advanced Lithography Research in the Physical Sciences Research Division. He joined the ECE department at University of Virginia in 2001 and was appointed Department Chair in 2003 and served until 2012 in that capacity. His research interests include nanofabrication, nanoelectronic devices and Engineering Education. c American Society for Engineering Education, 2016 Incorporating Studio Techniques with a Breadth-First Approach in Electrical and Computer Engineering EducationBackgroundThe
has been used for the on-linematerials development, implementation of the assessment tools to evaluate the students’progress, and students' perception of all three models.IntroductionWith a growing emphasis on student learning outcomes and assessment, faculty and educatorsconstantly seek ways to integrate theory and research in innovative course designmethodologies1-5. Critics of engineering education argue that educational programs focus toomuch on the transmittal of information through static lecture-discussion formats and routine useof outdated laboratory exercises6, 7. This educational approach often results in graduates, who donot have a full range of employable skills, such as, the ability to apply the knowledge skillfullyto problems
Paper ID #16051of the Central Information Technology Services (RUS) at the same time. Some of the main areas of herresearch are complex IT-systems (e.g. cloud computing, Internet of Things, green IT & ET, semanticweb services), robotics and automation (e.g. heterogeneous and cooperative robotics, cooperative agents,web services for robotics), traffic and mobility (autonomous and semi-autonomous traffic systems, inter-national logistics, car2car & car2X models) and virtual worlds for research alliances (e.g. virtual andremote laboratories, intelligent assistants, semantic coding of specialised information). Sabina Jeschkeis vice dean of the Faculty of Mechanical Engineering of the RWTH Aachen University, chairwoman ofthe board of
physics (1989), and the Ph.D. in electrical engineering (1993) from Texas A&M University. His areas of interest in research and education include product development, analog/RF electronics, instrumentation, and entrepreneurship.Mr. Dakotah M. Karrer, Texas A&M University Dakotah Karrer is a senior undergraduate student in the Electronics Systems Engineering Technology major within the Dwight Look College of Engineering at Texas A&M University. He also serves as the Mobile Integrated Solutions Laboratory (MISL) Manager and has been the hardware engineer for the STRATA-1 design team that developed flight hardware electronics for use on the International Space Station. Dakotah is pursuing a job in the private
graduate study in their chosen field.9 Other research has shown thatinteracting with graduate students in a laboratory setting can help undergraduate students seethemselves as future graduate students and increase their confidence in their ability to besuccessful as graduate students.10 REU programs are well represented across engineering fields,and in materials science and engineering have focused on topics such as nanotechnology andnanofibers11 and additive manufacturing12.In addition to supporting undergraduate students’ development as researchers, summer researchexperiences can also be an effective way of helping in-service teachers develop a betterunderstanding of research and willingness to incorporate open-ended research projects in
used to formfluid level measurement devices. Instrument performance was predicted from elementaryequations for the capacitive probe geometry, fluid properties, and 555 timer specifications. 4,5,6Student team designs were then tested using a laboratory vessel containing lightweight mineraloil. Data collected during testing was then used to create a calibration curve for each design. Oneyear later in a microcomputer interfacing course, the capacitive fluid level probes were againused by the same teams of students as the basis for an enhanced instrument design which nowadded an embedded microcontroller. The students incorporated the previous year’s test vesselcalibration data into their embedded software to provide a complete solution with a
Standards (NGSS). Itempowers students, and their teachers and communities, to create innovative solutions to apervasive environmental problem: stormwater. This has been achieved by actively engagingparticipants with STEM professionals in an inquiry and project based instructional environment.Using the latest sensor technology for data collection and computer modeling for data analysis,students address the widespread problem of stormwater management. During a 3-dayStormwater Institute at the University of Maine, the participants gain the knowledge of workingwith wireless sensors and laboratory systems to collect water measurements, includingtemperature, conductivity, pH, phosphorous, dissolved oxygen, and bacteria. The students thencan map water
. Astatke played a leading role in the development and implementation of the first completely online un- dergraduate ECE program in the State of Maryland. He has published over 50 papers and presented his research work at regional, national and international conferences. He also runs several exciting summer camps geared towards middle school, high school, and community college students to expose and increase their interest in pursuing Science Technology Engineering and Mathematics (STEM) fields. Dr. Astatke travels to Ethiopia every summer to provide training and guest lectures related to the use of the mobile laboratory technology and pedagogy to enhance the ECE curriculum at five different universities.Dr. Michael J
surveys,we are able to comprehensively analyze both the perceived impact of our camp from theattendee’s perspective. We also acknowledge and thank Microsoft and Facebook for theirgenerous financial support of this effort.IntroductionLast year, a local middle school teacher contacted our research laboratory to request acybersecurity awareness presentation to her computer class. With two groups of students in anelective course, the presentation was held twice. Between the two classes there was one girl inattendance. During the discussions following the presentation, both students and teachers had aninterest in cybersecurity, but felt they lacked sufficient training and suitable subject mattermaterials. In discussions with other local schools, and
periods were changed to include hands-on activities such ascompleting worksheets to assess lecture content knowledge, practice writing subroutines thatcould be used as part of the weekly lab assignment, or building circuits to interface externaldevices with a microcontroller. Each of the in-class activities was designed to measure studentunderstanding of course topics and to offload some of the laboratory work done during previoussemesters to the lecture period.This paper assesses the differences in student outcomes between the traditional and flippedformat of the course. Common final exam question responses from the traditional and flippedoffering are compared to showcase the differences in student comprehension of course topics.Student survey
Sparkfun Inventor Kits and peripheral sensors.The Cage is home to all of our hand tools (e.g., portable drills, Dremels, sanding equipment,wrenches) and several benchtop tools (e.g. belt sander, drill press), as well as prototyping space.The Universal VLS4.60 laser cutter lives in the Hack-A-Torium next to a fume hood, severallarge work tables, and a lot of project storage bins. The Pit has room for group work and a walllined with desktop computers, as well as two lounge areas for more casual collaborations. TheTest Lab houses our sensor inventory and two large tension testing rigs, and the MechanicalSystems Lab is home to three out of four of our laboratory courses. Finally, the Hive is primarilyused for teaching assistant (TA) office hours and
Biomedical, Industrial,Mechanical, and Software tracks. The course description states the following: “The student isintroduced to the fundamentals of engineering drawing. Topics include: three-view drawings,construction methods, CAD applications, graphical methods for engineering problem solving,three-dimensional modeling, and CAD data import/export/exchange.” The course is a 3 creditcourse with 2 lecture credits and 1 laboratory credit. Students attend two 50 minute lectures andone 2 and 1/2 hour laboratory each week. The prerequisite for the course is ENGR 1010 -Introduction to Engineering. In terms of the course objectives, after completing this course, thestudents will be able to: (i) understand basic concepts of engineering drawings and role
student at their convenience (an element of the Flipped classroom) thus freeingup class time for various Active Learning experiences including conceptual questions, Think-Pair-Share activities, Ranking tasks, individual and team quizzes, and collaborative problem solving.Project Based Learning (PBL) was used through two large team-based design projects undertakenduring a weekly laboratory session. A mixed-methods assessment strategy was employed toevaluate the success of these approaches. Quantitative data was obtained from final examperformance for both conceptual understanding and problem solving competency which wascompared directly to the same class taught in a traditional manner. Other quantitative andqualitative data, including student’s