Science Foundation CAREER grantunder Grant No. 1150874. Any opinions, findings, and conclusions or recommendationsexpressed in this material are those of the author(s) and do not necessarily reflect the views ofthe National Science Foundation.References 1. Golish, B. L., Besterfield-Sacre, M. E., & Shuman, L. J. (2008). Comparing academic and corporate technology development processes. Journal of Product Innovation Mangagement, 25, 47–62. 2. Csikszentmihalyi, M. (1999). 16 implications of a systems perspective for the study of creativity. Handbook of Creativity, 313. 3. Fila, N. D., Purzer, Ş., & Mathis, P. D. (2014). I’m not the creative type: Barriers to creativity in student engineering innovation projects
, 2007.[2] M. C. Yang, “Observations on concept generation and sketching in engineering design,” Res. Eng. Des., vol. 20, no. 1, pp. 1–11, Mar. 2009.[3] M. Tovey, S. Porter, and R. Newman, “Sketching, concept development and automotive design,” Des. Stud., vol. 24, no. 2, pp. 135–153, Mar. 2003.[4] A. Johri and V. K. Lohani, “Framework for improving engineering representational literacy by using pen-based computing,” Int. J. Eng. Educ., vol. 27, no. 5, p. 958, 2011.[5] J. Ravishankar, J. Epps, F. Ladouceur, R. Eaton, and E. Ambikairajah, “Using iPads/Tablets as a Teaching Tool: Strategies for an Electrical Engineering Classroom,” presented at the International Conference of Teaching, Assessment and Learning, Wellington, New
land in an“unrelated” occupation. Moreover, these data do not give a sense of how many suchgraduates may have been eyeing different (engineering and non-engineering) possibilitiesfrom the get-go.Sheppard et al.’s work on career decision-making among prospective engineeringgraduates suggests that in fact the majority of students are unsure and/or consideringoptions that span engineering and non-engineering work on the “eve” of graduation.4,5About one-third of students were exclusively focused on engineering options, and a muchsmaller fraction of students were exclusively focused on non-engineering work and/orgraduate study options. And while there may be reliable set of characteristics that predictthe likelihood of targeting non-engineering
middle school mathematics teacher’s practical knowledge using personal experiential research methods.Mr. Murat Akarsu, Purdue University, West Lafayette (College of Engineering) c American Society for Engineering Education, 2017 Mineral Mayhem: Using Engineering to Teach Middle School Earth Science (Resource Exchange) Target Grade Level: 6th-8th grade E n g rT E AM SEngineering to Transform the Education of Analysis, Measurement, & Science Authors and Contact Information: Holly Miller1 Tamara J. Moore2 Aran W. Glancy3 Emilie A. Siverling2 S. Selcen Guzey2 hmiller@hse.in.us tamara@purdue.edu aran@umn.edu esiverli
your REU student(s)? 2. Do you feel that the REU’s emphasis of the creative process impacted the REU student’s experiences? 3. Did the REU’s emphasis of the creative process impact your personal view of the research process?ProceduresThe pre-survey was administered to the students the week prior to the start of the REU, and thepost-survey was administered at the conclusion of the program. Surveys were administeredonline using the Qualtrics program.Student interviews were held within the span of one week towards the end of the program.Interviews of the faculty took place over a two-week period of time following the conclusion ofthe REU. Each interview lasted no longer than one hour. The interviews were conducted by
1) improve individual learning, 2) improve team performance, and 3) would mostbenefit individual members within teams performing at a high level. To explore these hypotheseswe compared student performance across two semesters, one that utilized cooperative groups andthe second that utilized TBL.MethodsThis research was approved by the University of Kansas Human Research Protection Program.In Fall 2014, 59 students enrolled in the course which was taught in a flipped format (Beichner,2008) in an active-learning classroom and utilized cooperative groups. Each class meetingconsisted of: 1) a reading quiz, 2) lecture highlights, 3) example problem(s), and 4) group work.The instructional team consisted of the professor, two graduate teaching
manufacturing and assembly processes used inproduction to facilitate cost, productivity, and environmental performance assessment during earlyproduct design. In the Sustainable Product Architecture and Supplier Selection (S-PASS) module,relationships between sustainable design requirements and their associated functions andarchitectural modules can be identified and evaluated against existing products. S-PASS assistsdetermining whether the functions and requirements are satisfied in available product modules.Possible product architectures can be configured to create an initial product architecture set. Final1 DUE-1431481, DUE-1432774, and DUE-1431739product architecture candidates and their suppliers are selected by evaluating the
the knowledge and skills that student veterans bring to higher education and toengineering education.23Following Minnis and Wang’s research on military veterans’ career decisions17 and Musgrove’sinvestigation of career planning of military veterans enrolled in college,24 our study draws onSampson et al.’s Cognitive Information Processing (CIP) approach to career intentions anddecision making.25 This theoretical framework has been used to better understand veterans’transitions into the workforce.20 Our student interviews highlight how two elements of thisapproach, Developing Self-Knowledge and Building Occupational Knowledge, may apply toSVE’s decision to enter the engineering education pathway. As a foundational step, developingself-knowledge
image or images comes to mind when you think of engineers or engineering? 4. In your view, what is science? What is its purpose? 5. Do you agree with the statement “engineering is applied science? Why, or why not? 6. In what way are science and engineering similar? 7. What are the differences between science and engineering? 8. If two engineering firms are given the same job (to design a new cell phone), would the product be more or less the same? Why, or why not? 9. Please answer the following three questions based on the statement here. Imagine that another bridge is going to be built over the Colorado River. a. What do engineers need to consider in the process in planning this? b. What component(s) of this task will be
found allthree cost subscales were significantly and negatively related with students’ intentions to persistin science, with the effort subscale having the strongest negative relationship with persistence.Informed by Perez et al.’s evidence of potential multidimensionality of the cost construct, Flakeet al.21 developed a new cost scale intended for broader use in an academic context. Similar tothe scale developed by Perez and colleagues, Flake et al.’s scale included task effort, loss ofvalued alternatives cost, and emotional cost. Flake et al. also suggested a new dimension, thecost of outside efforts, related to other demands on an individuals’ time and energy that mayincrease the cost associated with a particular task. Their preliminary
a secondoffering is planned for 2017 albeit with a more accessible project.References1. Goldman, S., & Carroll, M., & Zielezinski, M. B., & Loh, A., & Ng, E. S., & Bachas- Daunert, S. (2014, June), Dive In! An Integrated Design Thinking/STEM Curriculum Paper presented at 2014 ASEE Annual Conference & Exposition, Indianapolis, Indiana.2. Biggers, M., & Haefner, L. A., & Bell, J. (2016, June), Engineering First: How Engineering Design Thinking Affects Science Learning Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana.3. Menold, J., & Jablokow, K. W., & Kisenwether, E. C., & Zappe, S. E. (2015, June), Exploring the Impact of Cognitive Preferences on
and do not necessarily reflect the views of the federal government.References[1] Oakes, W., Duffy, J., Jacobius, T., Linos, P., Lord, S., Schultz, W. W., & Smith, A. (2002). Service-learning inengineering. In Frontiers in Education, 2002. FIE 2002. 32nd Annual (Vol. 2, pp. F3A-F3A). IEEE.[2] Duffy, J., Tsang, E., & Lord, S. Service-learning in engineering: What why and how? ASEE Annual Conference 2000.[3] Eyler, J., & Giles Jr, D. E. (1999). Where's the Learning in Service-Learning? Jossey-Bass Higher and Adult EducationSeries.[4] Sax, L. J., Astin, A. W., & Avalos, J. (1999). Long-term effects of volunteerism during the undergraduate years. Thereview of higher education, 22(2), 187-202.[5] National Academy of Engineering
Paper ID #19181MAKER: iTutor - Intelligent Tennis TutorDr. Hugh Jack P.E., Western Carolina University Dr. Jack is not the author. The abstract has been submitted on behalf of Kaviarasu P, Gokul Kannan, Kesava Mani, M H Ashik , Navin S - Kumaraguru College of Technology, Coimbatore, India. c American Society for Engineering Education, 2017iTutor - Intelligent Tennis TutorAuthors: Kaviarasu P, Gokul Kannan, Kesava Mani, M H Ashik , Navin SKumaraguru College of Technology, Coimbatore, IndiaAbstractTennis has been always been a sport of choice for many around the world. In India, it wasintroduced by the British in
Persons with Disabilities in Science and Engineering: 2011, National Science Foundation, Arlington, VA.[6] Seymour, E. and Hewitt, N.M. 1997. Talking about leaving: Why undergraduates leave the sciences, Boulder, CO: Westview Press.[7] Rovai, A. P. 2002. “Development of an instrument to measure classroom community.” The Internet and Higher Education, 5(3), pp. 197-211.[8] Courter, S. S., Millar, S. B., and Lyons, L. 1998. “From the students' point of view: Experiences in a freshman engineering design course.” Journal of engineering education, 87(3), pp. 283-288.[9] Smith, M. K., Jones, F. H., Gilbert, S. L., and Wieman, C. E. 2013. “The Classroom Observation Protocol for Undergraduate STEM (COPUS): A new
, theprograms available to students clearly developed the skills and knowledge necessary for venturecreation. There seemed to be a gap between the cultivation of skills and knowledge for newventure creation and the engagement of students in actual new venture creation.Looking more broadly, this phenomenon does not seem to be limited to the University ofVirginia. According to data, the number of entrepreneurship programs offered at institutions ofhigher education has been skyrocketing since the 1970’s [1–3]. However, there has beeninsufficient evidence to support that an increase in traditional curricular entrepreneurshipeducation leads to an increase in venture creation [4,5]. As of 2012, approximately 2,100colleges and universities in the United
100 papers and eight books including the most recent, P. B. Deshpande, Roberto Z. Tantalean, and M. A. Bhalodia, Process Control and Optimization (estimated 2017), P. B. Deshpande, Six Sigma for Karma Capitalism, 2015 (amazon), and P. B. Deshpande, PhD and James P. Kowall, MD (Neurology, Internal medicine), PhD (Theoretical Physics), The Nature of Ultimate Reality and How It Can Transform Our World: Evidence from Modern Physics; Wisdom of YODA, 2015 (amazon) all published by his consulting firm Six Sigma and Advanced Controls, Inc. The latter two books are meant to serve as texts in the course(s) on the science of external and internal excellence. Pradeep is a recipient of several awards including Donald P. Eckman
. BibliographyEast, S., Butts, J., Papa, M., & Shenoi, S. (2009). A Taxonomy of Attacks on the DNP3 Protocol. In C. Palmer & S. Shenoi (Eds.), Critical Infrastructure Protection III (Vol. 311, pp. 67–81). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from http://link.springer.com/10.1007/978-3- 642-04798-5_5IEEE SA - 1815-2012 - IEEE Standard for Electric Power Systems Communications-Distributed Network Protocol (DNP3). (2016, September 25). Retrieved September 25, 2016, from https://standards.ieee.org/findstds/standard/1815-2012.htmlIEEE Xplore Abstract Record. (n.d.). Retrieved from http://ieeexplore.ieee.org/document/6249320/Rawal, B. S., Karne, R. K., & Wijesinha, A. L. (2012). Split protocol
because it provided training inobservation, supplied detailed information, and aroused pupils’ interest.” [4] According to Blosser,however, the value of teaching labs was questioned in the 1970’s and 1980’s by several studiesthat examined student achievement, attitudes, critical thinking, cognitive style, scienceunderstanding, skill development, interest level, retention in courses, and the ability to workindependently. Some studies found no significant differences between groups who had labexperiences verses groups that did not. [5] However, in the intervening period of the early 21stCentury, numerous reviews and studies (more than can be cited practically here) refuted the late20th Century view and confirmed that laboratories are an important
) -90 -135 -180 1 2 3 10 10 10 Frequency (rad/s) 1 Invivo=onalivesubject,asopposedtousingexcisedskinfortesting. 2 Boyeretal.,“Dynamicindentationonhumanskininvivo:ageingeffects.”Skin.Res.Tech.15(2009) AppendixB
Example Topic(s) Aligned Measurement Human-Centered Creative Self-Efficacy and Creative Role-Identity; Creativity Design Thinking Design in Engineering Design (Artifacts) Design Elements and Engineering Design Ideation Capacity; Creativity in Engineering Design Principles Process (Artifacts) Ideation Capacity; Creativity in Engineering Design Spatial Thinking (Artifacts) Design Skill Development Technical Capacity Creativity in Engineering Design (Artifacts) Tinkering
; however, there were students in each grade level who recounted how their groupnegotiated specific disagreements around design decisions. Consider, for example, the followingexchange, in which one student describes a disagreement about the placement of the catapult inthe 6th grade design challenge: R: Did you feel comfortable sharing your ideas with the others in your group? S: Yes ma'am. R: Why do you think that is? S: We was all buddies and stuff. She let us choose groups. We got to choose our buddies. I felt comfortable because, you know, there was really no target answers. It was just an idea. R: Was there a time when there was any kind of disagreement in your group? S: Yes. One time me and this
2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 In 2 In 4 Institutionalizatio Institutionalizatio Very Institutionalize Freshman department department n n limited d s s in progress in progress In 2 In 2 Institutionalizatio Sophomor Institutionalize
market for the product(s) and other revenue generating streams was discussed (Outcomes 2 and 6). e) A clear recommendation as to whether the project should be considered in more detail was made. This recommendation was based on the I/O economic assessment, as well as on environmental and social measures. It was also made clear which process alternative(s) were viable, if any (Outcomes 1 and 4). f) The proposal was written in a logical format. There were minimal typos and formatting errors, the figures were clear and readable, and the references were cited correctly (Outcome 1).Students were assigned the prompt on the first day of class and were allowed eight weeks tocomplete the
, undergraduate design canvas can improve both student learningand successful product design.Another objective of the work is to develop a “meta-canvas” approach that is comprehensive andrigorous, yet customizable, such that faculty can develop a canvas to suit their specific course(s).Customizability for different faculty approaches is vital, but an underlying metamodel used alsohelps make it clear where the boundaries to customizability lie. Existing canvases, with theirinherent complexity, may be better suited to more advanced courses, and a customizable canvasapproach may broaden the impact of the canvas concept from first-year design through capstonedesign and beyond. Faculty may utilize different approaches or have different learning
s Exams Tutor Measure Integrity E Grading … P Graduate Assistants Computerized Scholar
strategies and style). Presumably,improved instructional support would mitigate the damaging impact of negative perceptions such asstereotype threat (Steele & Aronson, 1995) or avoidance orientation (Midgely, 2001) that limitengagement, and at the same time support student tendencies related to cultural norms and practices.Future research that can untangle the complex combination of these factors can provide new insights intohow to support UREM’s in engineering education contexts. ReferencesBenson, L., Kirn, A., & Faber, C. (2013, June). CAREER: Student motivation and learning in engineering. In ASEE Annual Conference Proceedings.Borrego, M., Cutler, S., Prince, M., Henderson, C., &
1. Arduino. (2017). http://www.arduino.org/, last accessed: January 26, 2017. 2. Cardella, M. E., Wolsky, M., Paulsen, C. A., Jones, T. R. (2013). Informal Pathways to Engineering. In Proceedings of the 120 th ASEE Annual Conference & Exposition, Atlanta, GA. 3. Carnasciali, M-I., Thompson, A. E., Thomas, T. J. (2013). Factors influencing students’ choice of engineering major. In Proceedings of the 120 th ASEE Annual Conference & Exposition. Atlanta, GA. 4. Conrad, J. M., Harkins, M. S., Taylor, D. B., Mayhorn, J., Raquet, J. (2015). Prospect for Success in Engineering: Assessing Freshmen Curriculum Engagement. In Proceedings of the 7th First Year Engineering Experience (FYEE) Conference. Roanoke
-1-2419.The views and conclusions contained in this document are those of the authors and should not beinterpreted as representing the official policies, either expressed or implied, of the Office ofNaval Research or the U.S. Government. The U.S. Government is authorized to reproduce anddistribute reprints for government purposes notwithstanding any copyright notation hereon.Bibliography[1] Aurigemma, J., Chandrasekharan, S., Nersessian, N. J., and Newstetter, W., 2013, "Turningexperiments into objects: The cognitive processes involved in the design of a lab‐on‐a‐chipdevice," Journal of Engineering Education, 102(1), pp. 117-140.[2] Cattano, C., Nikou, T., and Klotz, L., 2010, "Teaching systems thinking and biomimicry tocivil engineering
sampling techniquesduring campus site visits (Patton, 2015).AcknowledgementsThe authors would like to acknowledge Dr. Kevin Fosnacht with the National Survey of StudentEngagement for assistance in providing the initial analysis of the data being used to validate theproposed model presented in this paper.ReferencesAllie, S., Armien, M. N., Burgoyne, N., Case, J. M., Collier-Reed, B. I., Craig, T. S., . . . Wolmarans, N. (2009). Learning as acquiring a discursive identity through participation in a community: improving student learning in engineering education. European Journal of Engineering Education, 34(4), 359-367. doi:10.1080/03043790902989457American Society for Engineering Education. (2014). Divisions: American Society
engineering student self-efficacy. Journal of Engineering Education, 98(1): 27-34.[8] Baker, D., Krause, S., Roberts, C. (2007). An intervention to address gender issuesin a course on design, engineering, and technology for science educators. Journal ofEngineering Education, 96(3): 213-226.[9] Grant, M. M. (2002). Getting a grip on project-based learning: Theory, cases andrecommendations. Meridian: A middle school computer technologies journal, 5(1),83.[10] Bell, S. (2010). Project-based learning for the 21st century: Skills for the future.The Clearing House. 83(2): 39-43.[11] Alfonseca, E., Carro, R. M., Martín, E., Ortigosa, A., & Paredes, P. (2006). Theimpact of learning styles on student grouping for collaborative learning: a case study.User