. In [16], we surveyed the current practices inSE education published by the European Society for Engineering Education (SEFI), and clas-sified them into 8 categories: • Master programs with academia-industry partnerships [17] [18]. • Few-months international academia-industry projects [19]. • Student challenges [20]. • Few-weeks projects within regular engineering curriculum [21]. • Theoretical courses within industrial engineering curriculum [22]. • Few-Days Laboratories [23] [24]. • LEGO-Based Programs [25] [26] [27] [14] [28] Other less prominent SE education approaches exist, some of which can be found in [29],such as Quizzes, Lab Reports, Design Projects, Arduino Projects, Exams, Homework, Labs,Lecture and class
and ACS Publications Division of the American Chemical Society.Faber, C., Vargas, P., & Benson, L. (n.d.). Measuring Engineering Epistemic Beliefs in Undergraduate Engineering Students.Ferguson, L. E., & Braten, I. (2013). Student profiles of knowledge and epistemic beliefs: Changes and relations to multiple-text comprehension. Learning and Instruction, 25, 49–61. http://doi.org/10.1016/j.learninstruc.2012.11.003Galloway, K. R., & Bretz, S. L. (2015a). Measuring meaningful learning in the undergraduate chemistry laboratory: a national, cross-sectional study. Journal of Chemical Education. Easton: American Chemical Society Division of Chemical Education.Galloway, K. R., & Bretz, S. L. (2015b). Using
Course Learning Objectives in a Large Undergraduate Environmental Engineering ClassActive Learning Luster-Teasley et 2016 Making the Case: Adding Case Studies to an al. Environmental Engineering Laboratory to Increase Student Engagement, Learning, and Data AnalysisFlipped class Bielefeldt 2013 Teaching a Hazardous Waste Management Course using an Inverted Classroom2. Course Description and
another endorsement of the ‘you’ve done goodthings.’” He hopes there is more freedom to work and less administrative duties involved in hisnew job after he earns his Ph.D. in comparison to the military lab.KristenSituating the CaseTaking the advice of an engineering faculty member, Kristen joined a non-profit organizationafter graduation for the summer to investigate cookstoves for developing countries. She met herhusband there, and they decided to spend the next few years fulfilling their humanitarian sense ofduty. Kristen was a pre-school teacher, worked with special needs children and adults, and re-joined the non-profit organization as a laboratory manager. She created test protocols, wrotereports, and traveled to developing countries. After
Engineering for Honors program, he is heavily involved with teaching and developing laboratory content, leading the in-house robotics controller maintenance, and managing the robotics project development.Mr. Michael Schulz, The Ohio State University Michael H. Schulz is a teaching assistant with the Fundamentals of Engineering Honors program at The Ohio State University. He is currently the lead developer of the robot course software development team, of which he has been a member for three years. As a Computer Science and Engineering (CSE) student, he will graduate in May, 2017 with his B.S.C.S.E and a minor in Music, Media, and Enterprise.Ms. Clare Rigney, Ohio State University, Engineering Education Department Clare has
theUnited States to compete in the space race. This shift was achieved “at the expense of design andapplication-based laboratory courses,” according to Holloway (1991:94). As a debate over theengineering curriculum grew, S.C. Hollister, president of ASEE, commissioned a review ofengineering education, which would become known as the Grinter Report.A primary recommendation of the Grinter Report was for engineering programs to increase themathematics, physics, and engineering sciences content of the curriculum (Grinter, 1955). Adraft of the report also recommended that engineering be bifurcated (Seely, 1995). One formwould focus more on the scientific and theoretical aspects of engineering and educate engineersworking in research and design for the
Introduction to Digital Logic Design Laboratory Course,” Proceddings of 2015 American Society for Engineering Education, (Zone III). https://www.asee.org/documents/zones/zone3/2015/Active-Learning-in-the-Introduction-to-Digital-Logic- Design-Laboratory-Course.pdf[7] Aws Yousif Fida El-Din and Hasan Krad, “Teaching Computer Architecture and Organization using Simulation and FPGAs,” International Journal of Information and Education Technology, Vol. 1, No. 3, August 2011.[8] Guoping Wang, “Lessons and Experiences of Teaching VHDL,” Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition[9] Chao Wang and Michael Goryll, "Design and Implementation of an Online Digital
learning is thetopic of this study. A number of journal articles are available that address teaching core engineering courses,and this situation is true for the teaching of Process Control and Automatic Control. Mostpublished papers (e.g., Edgar et. al., 2006; Khier, et. al., 1996; and Seborg et.al, 2003) addressthe course content and issues like whether frequency response should be included in the course,the proper role of dynamic simulation, and design of physical laboratories. Recently, a fewstudies have addressed teaching and learning methods that could be applied to any appropriatecontrol course content. Rossiter (2014) describes blended learning using YouTube videosdeveloped for students to prepare before class. The class was large
Accounting from the Universidad Aut´onoma de Baja California (UABC) in Mexico. She has over 5 years of experience as a Financial Auditor for the Mexican Congress. She has had the opportunity to participate as part of the PROMISE community to enhance the preparation of graduate and postdoctoral fellows in STEM. Her research interests focus on bridging the disparity of availability of information that improves programs that enforce participation in STEM careers.Miss Amanda Lo, University of Maryland, Baltimore County I am a current Master’s student in the Biological Sciences Department of the University of Maryland, Baltimore County. I work in Dr. Jeff Leips’ research laboratory where I spend my time researching about
Alabama. Dr. Burian’s professional career spans more than 20 years during which he has worked as a de- sign engineer, as a Visiting Professor at Los Alamos National Laboratory, as a Professor at the University of Arkansas and the University of Utah, and as the Chief Water Consultant of an international engineer- ing and sustainability consulting firm he co-founded. He served as the first co-Director of Sustainability Curriculum Development at the University of Utah where he created pan-campus degree programs and stimulated infusion of sustainability principles and practices in teaching and learning activities across campus. Dr. Burian currently is the Project Director of the USAID-funded U.S.-Pakistan Center for
, thencreating a future state map to create an ideal process, and finished with the implementation of 5Sin the laboratory. Results showed an improved process and a cleaner, safer, more organizedlaboratory (Sreedharan & Liou, 2007). Using these published works as a guide, this case studyattempted to provide a solid foundation of knowledge on lean manufacturing to students and thenhave them implement those teachings in small scale prototype projects.MethodsThis case study took place during the fall and spring semesters of the 2016-2017 academic year.The subjects of this research study were students enrolled in the Mechanical Engineer SeniorDesign Practicum - MECH 486 which included senior engineering students from both theMechanical Engineering (ME
like “What does this mean?”, “How doesthis impact what I’m doing?”, and “How do I use this?”. These students are not only conversantin the theoretical knowledge, but also enjoy developing the skills needed to make a designphysically come to life.There are multiple tools utilized by Purdue to develop successful graduates. Third partyvalidation through either ABET and the FAA provides constant evaluation to ensure the programis providing graduates with desired successful outcomes. The program itself is filled withopportunities for learning through multiple methods such as hands-on laboratories andcollaborative learning. The program does not stop with only the technical training of itsgraduates, but also includes multiple opportunities for
Mechanical Engineering at NYU Tandon School of Engineering, Brooklyn, NY. She is serving as a research assistant under an NSF-funded DR K-12 project.Dr. Vikram Kapila, New York University, Tandon School of Engineering Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and con- trol
facultymember from these disciplines who are actively involved in each weekly class session. Theweekly 3-hour class sessions are taught as a “laboratory” experience with students mainlyinvolved in active learning of fundamental principles for effective interdisciplinary collaboration.Students work in mixed teams toward a tangible solution to a community health challenge as partof the course project for the duration of the semester. The class is taught in a MakerSpace; anovel instructional space developed according to constructivist learning principles26 in whichparticipants co-learn and co-create27. The MakerSpace is an essential element of the course, as itfacilitates students’ problem solving through prototyping and testing a solution with
Engineering, Materials and Processes, and Statics. Her teaching interests include development of solid communication skills and enhancing laboratory skills. c American Society for Engineering Education, 2017 Curing the cheating epidemic? A multi-site, international comparison of perspectives on academic integrity and the way we “cure” by teaching———————————————————————————AbstractPlagiarism became an issue in both the scientific and political communities in Germany at thebeginning of the decade. The former German Minister of Defense and the Minister of Educationand Science lost their Ph.D. titles due to plagiarism and subsequently resigned. In response, aGerman
Paper ID #18703A Symbiotic Solution for Facilitating Faculty Transitions in Engineering AcademiaDr. Comas Lamar Haynes, Georgia Tech Research Institute Comas Lamar Haynes is a Principal Research Engineer / faculty member of the Georgia Tech Research In- stitute and Joint Faculty Appointee at the Oak Ridge National Laboratory. His research includes modeling steady state and transient behavior of advanced energy systems, inclusive of their thermal management, and the characterization and optimization of novel cycles. He has advised graduate and undergradu- ate research assistants and has received multi-agency funding for
Engineering, NY, USA. His research and teaching interests include robotics, mechatronics, control systems, electro-mechanical design, human factors/ergonomics, engineer- ing psychology, virtual reality, artificial intelligence, computer vision, biomimetics and biomechanics with applications to industrial manipulation and manufacturing, healthcare and rehabilitation, social services, autonomous unmanned services and STEM education.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K
) evaluation, enhancement or design of worksystems following ergonomic principles. The course is a core 4 credit course (75 contacthours) with guided laboratory activities and a required design project. Typically, the courseproject is defined by the course instructor and can vary between a case study, classroomprojects or projects in service or manufacturing industry (Pomales-Garcia & Cortes, 2014). Inthis particular scenario, the project weight was 17% of the final course grade and required aproposal, a final written report and an oral presentation using a poster format. Courseactivities incorporated the use of rubrics for evaluation purposes (see Appendix A-C).MethodologyIn 2015, a group of 45 Industrial Engineering undergraduate students (22
Paper ID #17861Assessing Communications and Teamwork Using Peer and Project SponsorFeedback in a Capstone CourseDr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr. Johnson’s
learningare collaborative learning, co-operative learning, and problem-based learning. Various studies,from using interactive, hands-on lessons and activities designed to teach research process toundergraduate engineering students 1 , to preparing manufacturing engineering students throughcompetitions, projects sponsored by industry, capstone projects, laboratory exercises or projectssimulating real-life scenarios 2 , have shown that active learning increases student performance inSTEM subjects.Critical thinking, identified by The U. S. Department of Labor as the raw material of a number ofkey workplace skills such as problem solving, decision making, organizational planning, and riskmanagement, is highly coveted by employers of engineering graduates
) participated in University of Southern Maine’s Thinking Matters Student Exhibition. • STEM-Scholar (Eng) participated in University of Southern Maine’s Thinking Matters Student Exhibition. • STEM- Scholar (Com Sci) participating in an internship within his field of study and is working part-time 10-15 hours a week.Employment and Graduate School for early graduates • Southern Maine CC instructor • Graduate School Environmental Science • A&L Laboratory • IBM • GAR Manufacturing • Graduate School Computer Science • Network Security • Sage Data Security • Pratt & Whitney • Peregrine Turbine Technologies • Bath Iron Works • Graduate School - Biology • Maine Medical Center Research
, Tampa, FL. Since 2007, she has been the director of the Virtual Manufacturing and Design Laboratory for Medical Devices (VirtualMD Lab). Her research interests include computational geometry, machine learning, data mining, product design, and engineering education with applications in healthcare, medical image processing, computer-aided decision support systems, and medical device design. c American Society for Engineering Education, 2017 The Impact of Healthcare-Related Workshops on Student Motivation and Retention in Engineering Grisselle Centeno, Susana Lai-Yuen, Iman Nekooeimehr, Sharmin Mithy, Clarissa Arriaga, Carolina Giron
Internet of Things (IoT) SIG Member. In addition, Dr. Abdelgawad served as a PI and Co-PI for several funded grants from NSF.Dr. Ishraq Shabib, Central Michigan University Dr. Ishraq Shabib holds a B.Sc in mechanical engineering from Bangladesh University of Engineering and Technology. He received his M.Sc. and Ph.D. both in Mechanical Engineering from Carleton University, Canada. After his Ph.D., he worked for two years as a post-doctoral visiting fellow at CANMET research laboratory of Natural Resources of Canada. In 2011, he joined the department of mechanical engineering at the University of Texas at El Paso as a research assistant professor. Since 2013, he has been serving the school of engineering and technology
has over 30 years of combined academic and industrial management experience. He received his BSME and MSME degrees from Michigan Technological University.Dr. S. Patrick Walton, Michigan State University S. Patrick Walton received his B.ChE. from Georgia Tech, where he began his biomedical research career in the Cardiovascular Fluid Dynamics Laboratory. He then attended MIT where he earned his M.S. and Sc.D. while working jointly with researchers at the Shriners Burns Hospital and Massachusetts General Hospital. While at MIT, he was awarded a Shell Foundation Fellowship and was an NIH biotechnology Predoctoral Trainee. Upon completion of his doctoral studies, he joined the Stanford University Genome Technology
Department of Electrical and Computer Engineering at Colorado State University, where he also is Director of Electromagnetics Laboratory. He received a Ph.D. in elec- trical engineering from the University of Belgrade, Yugoslavia, in 1995. His research publications in computational and applied electromagnetics include more than 150 journal and conference papers. He is the author of textbooks Electromagnetics (2010) and MATLAB-Based Electromagnetics (2013), both with Pearson Prentice Hall. Prof. Notaros served as General Chair of FEM2012, Colorado, USA, and as Guest Editor of the Special Issue on Finite Elements for Microwave Engineering, in Electromagnetics, 2014. He was the recipient of the 1999 Institution of Electrical
). Cognitive Apprenticeship in Science Through Immersion in Laboratory Practices. International Journal of Science Education, 29(2), 195-213.Fleming, L., Engerman, K., & Williams, D. (2006). Why Students Leave Engineering: The Unexpected Bond. American Society for Engineering Education Annual Conference. Chicago, IL.Garcia-Otero, S., & Sheybani, E. O. (2012). Retaining Minority Students in Engineering: Undergraduate Research in Partnership with NASA. American Society for Engineering Education Annual Conference. San Antonio, TX.Grindstaff, K., & Richmond, G. (2008). Learners' Perceptions of the Role of Peers in a Research Experience - Implication for the Apprenticeship Process, Scientific Inquiry, and
component modeling of elastomeric space seals for manned spaceflight; an asset to NASA and the development of advanced aerospace seals for the next generation of manned spacecraft. The unique problem necessitated a grasp of both fluid dynamics and material science, as well as experimental and computational analysis. As a DAGSI/Air Force Research Laboratory Ohio Student-Faculty Fellow, Dr. Garafolo gained experimental knowledge in structural dynamics of turbomachinery. In particular, his research on engine order excitation yielded insight into generating high cycle fatigue of turbomachinery using acoustic excitation.Dr. Nidaa Makki, University of Akron Dr. Nidaa Makki is an Associate Professor in the LeBron James Family
Engineeringdepartments get opportunity to learn about the application of these disciplines to the AerospaceEngineering and unmanned aerial systems.80% of the students who responded to the survey questionnaire said that the project was helpfulfor them in learning disciplines in engineering and science other than their major discipline.Most of the students also said that the projects helped them acquire new skills.Also, a number of Aerospace Engineering have been getting employment for the industry careersthat have traditionally required Computer Science or Electrical & Electronics Engineeringgraduates such as in Jet Propulsion Laboratory, and Unmanned Systems Division of NorthropGrumman Corporation.D. Continued Involvement in UAS Research ProjectsMost of the