Paper ID #19189Optimizing Efficiency and Effectiveness in a Mechanical Engineering Labo-ratory using Focused ModulesDr. Jeffrey A. Donnell, Georgia Institute of Technology Jeffrey Donnell is the Frank K. Webb Chair in Professional Communication at Georgia Tech’s George W. Woodruff School of Mechanical EngineeringMr. Philip Varney, Georgia Institute of Technology Phil Varney is currently a teaching instructor at Georgia Tech, where he is also completing his PhD degree in rotor fault diagnostics.Dr. David MacNair, Georgia Institute of Technology Dr. MacNair serves as Director of Laboratory Development in the Woodruff School
Laboratory Exercise for Engineering Technology Students T. Sean Tavares, Ph.D. University of New Hampshire at Manchester Applied Engineering and Sciences Department, Engineering Technology ProgramAbstractA laboratory exercise based on the performance testing of small consumer-grade water pumpsprovides a versatile and economical platform for teaching engineering technology students thebasics of industrial experimental testing practices. This exercise also provides a practical meansfor students to learn firsthand about the basic operating characteristics of centrifugal pumps andclosely related devices such as centrifugal compressors and fans. This experimental platformprovides ample
Paper ID #19554Developing Additive Manufacturing Laboratory to Support Instruction andResearch in Engineering TechnologyDr. Mert Bal, Miami University Mert Bal received his PhD degree in Mechanical Engineering from the Eastern Mediterranean Univer- sity, North Cyprus in 2008. He was a Post-Doctoral Fellow in the University of Western Ontario, and a Visiting Researcher at the National Research Council Canada in London, Ontario, Canada between 2008 and 2010. He was involved in various research projects in the areas of collaborative intelligence, localiza- tion and collaborative information processing in wireless sensor
c American Society for Engineering Education, 2017 Does Performance-Based Assessment in an Introductory Circuits Laboratory Improve Student Learning?AbstractUndergraduate engineering students regularly participate in laboratory experiences inintroductory circuit theory courses. Based on instructor experience, it can be observed thatstudents often struggle to remember how to use test and measurement equipment or importantsoftware from week to week, making long term retention of necessary skills inadequate. Thefacilitators of this study searched for strategies to improve student retention of important skills,and drew inspiration from performance-based assessment strategies used in the healthcareprofession. In
faculty in their transition to using evidence-based teaching strategies. c American Society for Engineering Education, 2017 Impact of Course Structure on Learning and Self-Efficacy in a Unit Operations LaboratoryIntroductionIn the chemical engineering curriculum, the unit operations laboratory course traditionally servesseveral key roles in the development of students as professional engineers. The primary goal ofthe course is to apply chemical engineering theory learned in core courses to the operation ofequipment. As part of this process, however, numerous additional skills are often also learnedand/or emphasized: experimental design, instrumentation, technical communication
Paper ID #19397Incorporating the Raspberry Pi into laboratory experiments in an introduc-tory MATLAB courseDr. Naji S Husseini, Biomedical Engineering at NCSU and UNC-CH Naji Husseini is a lecturer in the Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University. He received his B.S. and M.Eng. in En- gineering Physics from Cornell University and his M.S. in Electrical Engineering and Ph.D. in Applied Physics from the University of Michigan, Ann Arbor. He teaches classes in materials science, biomate- rials, MATLAB programming, and biomechanics for
Paper ID #19517Using WebGL in Developing Interactive Virtual Laboratories for DistanceEngineering EducationDr. Mert Bal, Miami University Mert Bal received his PhD degree in Mechanical Engineering from the Eastern Mediterranean Univer- sity, North Cyprus in 2008. He was a Post-Doctoral Fellow in the University of Western Ontario, and a Visiting Researcher at the National Research Council Canada in London, Ontario, Canada between 2008 and 2010. He was involved in various research projects in the areas of collaborative intelligence, localiza- tion and collaborative information processing in wireless sensor networks
Paper ID #18723Interactive Digital Logic Laboratory for K-12 Students (Work in Progress)Dr. Rohit Dua, Missouri University of Science & Technology ROHIT DUA, Ph.D is an Associate Teaching Professor in the Department of Electrical and Computer En- gineering at the Missouri University of Science and Technology and Missouri State University’s Coopera- tive Engineering Program. His research interests include engineering education. (http://web.mst.edu/˜rdua/) c American Society for Engineering Education, 2017 Interactive Digital Logic Laboratory for K-12 Students (Work in
Paper ID #18168Demonstration and Simulation of Dispersion in Coaxial Cables with Low PassFilters - A Teaching Laboratory ExperimentMajor Alex Francis Katauskas, Defense Threat Reduction Agency Major Alex F. Katauskas graduated from the U.S. Naval Academy in 2002 with a B.S in Economics, and graduated from Rensselaer Polytechnic Institute in 2013 with a M.S. in Physics. He served as an instructor in the Department of Physics and Nuclear Engineering at the U.S. Military Academy, West Point, NY for two and a half years. He is a member of the Sigma Pi Sigma honor society. He is currently serving at the Defense Threat Reduction
Paper ID #19754An Educational Laboratory Experimental System for Teaching Chemical Re-action Process Dynamics and ControlMalia L. Kawamura, University of Illinois, Urbana-Champaign Malia Kawamura is an M.S. candidate in Mechanical Science and Engineering at the University of Illinois at Urbana-Champaign in the Alleyne Research Group. She is funded by the National Science Foundation Graduate Fellowship Program.Prof. Andrew G. Alleyne, University of Illinois, Urbana-Champaign Dr. Andrew G Alleyne is the Ralph & Catherine Fisher Professor of Mechanical Engineering at the Uni- versity of Illinois (UIUC). He received his
College, M. Phil. from University of Cambridge (U.K.), and her Ph.D. from Cornell Uni- versity, all in physics.Lt. Col. Christopher I. Allen, Air Force Research Laboratory Christopher I. Allen is the Deputy Chief of the Battlespace Environment Division, Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico. He received his B.S. in electrical engineering from the University of Houston in 1993, his M.S. in electrical engineering from the Air Force Institute of Technology (AFIT) in 2010, and his Ph.D. in electrical engineering from AFIT in 2015. His research interests include microelectronics, the energy value of information, and effects of radiation on electronic devices.Michael
,statics) would require the course to cover all of that course’s content, severely restricting the natureof the research projects and the time available to work on them. Also, the program is tailored toengineering research objectives that include elements of innovation and technology development,as opposed to discovery (in the natural sciences). Rather than spending extensive periods in aformal teaching laboratory, the students often spend time in the engineering makerspace and/or inthe research labs of their faculty mentors. Research projects are conducted in small teams,generally 2-4 students per team, and students are expected to spend approximately 5 hours/weekon their research—enough time to make steady progress on their project but not
in engineering. • Increase the participation of a significantly underrepresented group of students who have the potential to profoundly impact the field, but are at high-risk of academic failure.This year the site hosted nine engineering students, four female and five male. The participantsranged from 18 to 28 years of age and academic standings of sophomores to seniors. Eachstudent was assigned a focused research project in the field of cyber and physical security ofcritical infrastructure and was mentored by a dedicated faculty and graduate student. In additionto their individual projects, the students participated in afternoon laboratory rotations twice aweek for seven weeks to expose them to the multidisciplinary nature of critical
Paper ID #18793An Educational Kit for Introducing Microfluidics-based Cell Adhesion Assayin Undergraduate Laboratory (Work in Progress)Dr. Yan Wu, University of Wisconsin, Platteville Yan Wu graduated from Tsinghua University, Bejing, China, in 1996 with a bachelor’s degree in pre- cision instruments and a minor in electronics and computer yechnology. She received her M.S. degree in mechanical engineering from the University of Alabama in 1998. She received her Ph.D. in elec- trical engineering from the University of Illinois, Urbana-Champaign, in 2005. Her Ph.D. thesis work was in the area of micro-electro-mechanical systems
Paper ID #19622Pilot Implementation of a Task-based, Open-ended Laboratory Project usingMEMS Accelerometers in a Measurements and Instrumentation CourseDr. Daisuke Aoyagi, California State University, Chico Daisuke Aoyagi received a B.Eng. in Mechanical Engineering from Waseda University in Tokyo, Japan, and a M.S. and a Ph.D. in Mechanical and Aerospace Engineering from University of California, Irvine. He worked as a research engineer at Los Amigos Research and Education Institute in Downey, Cali- fornia. He is an assistant professor in the department of Mechanical and Mechatronic Engineering and Sustainable
Paper ID #20575Work in Progress: Curriculum Revision and Classroom Environment Re-structuring to Support Blended Project-Based Learning in First-Year Gen-eral Engineering Laboratory CoursesProf. Brandon B. Terranova, Drexel University Dr. Terranova is an Assistant Teaching Professor in the College of Engineering at Drexel University. In his current role, he is the lead instructor for the freshman engineering program, and oversees activities in the Innovation Studio, a large-area academic makerspace. He has taught and developed courses in general engineering and mechanical engineering at Drexel. Prior to Drexel, he has taught
Paper ID #18898No More Death by PowerPoint! Using an Alternative Presentation Model ina ChE Unit Operations Laboratory CourseDr. Matthew Cooper, North Carolina State University Dr. Matthew Cooper is a Teaching Assistant Professor in the Department of Chemical and Biomolecular Engineering at North Carolina State University where he teaches Material and Energy Balances, Unit Operations, Transport Phenomena and Mathematical / Computational Methods. He is the recipient of the 2014 NCSU Outstanding Teacher Award, 2015 ASEE ChE Division Raymond W. Fahien Award, and currently serves as the ASEE Chemical Engineering Division’s
Paper ID #19962Internet of Things: Remote Integrated Laboratory Activities in Green En-ergy Manufacturing and Energy Management Learning Modules: Heat Ex-changers Efficiency, the Design PerspectiveDr. Irina Nicoleta Ciobanescu Husanu, Drexel University (Tech.) Irina Ciobanescu Husanu, Ph. D. is Assistant Clinical Professor with Drexel University, Engineer- ing Technology program. Her area of expertise is in thermo-fluid sciences with applications in micro- combustion, fuel cells, green fuels and plasma assisted combustion. She has prior industrial experience in aerospace engineering that encompasses both theoretical analysis
Paper ID #19009Professional development workshop to promote writing transfer between first-year composition and introductory engineering laboratory coursesDr. Dave Kim, Washington State University, Vancouver Dr. Dave Kim is an Associate Professor and Coordinator of Mechanical Engineering in the School of Engineering and Computer Science at Washington State University Vancouver. He has 15 years of ex- perience in engineering materials and manufacturing. His research area includes materials processing, structural integrity improvement, and hybrid composite manufacturing. He has been very active in ped- agogical research and
Paper ID #19541A Laboratory-based Course in Systems Engineering Focusing on the Designof a High-speed Mag-lev Pod for the SpaceX Hyperloop CompetitionDr. Dominic M. Halsmer P.E., Oral Roberts University Dr. Dominic M. Halsmer is a Professor of Engineering and former Dean of the College of Science and Engineering at Oral Roberts University. He has been teaching science and engineering courses there for 25 years, and is a registered Professional Engineer in the State of Oklahoma. He received BS and MS Degrees in Aeronautical and Astronautical Engineering from Purdue University in 1985 and 1986, and a PhD in Mechanical
Laboratory of KnowledgeEngineering for Materials Science Xiong Luo received the Ph.D. degree from Central South University, China, in 2004. He currently works as a Professor in the School of Computer and Communication Engineering, University of Science and Technology Beijing, China. His current research interests include machine learning, cloud computing, and computational intelligence. He has published extensively in his areas of interest in journals, such as the Future Generation Computer Systems, Computer Networks, IEEE Access, and Personal and Ubiquitous Computing. c American Society for Engineering Education, 2017Enhancing Communication with Students Using a Teaching Method Based onTopical
of Science and Technology, Beijing and Beijing Key Laboratory of KnowledgeEngineering for Materials Science Xiong Luo received the Ph.D. degree from Central South University, China, in 2004. He currently works as a Professor in the School of Computer and Communication Engineering, University of Science and Technology Beijing, China. His current research interests include machine learning, cloud computing, and computational intelligence. He has published extensively in his areas of interest in journals, such as the Future Generation Computer Systems, Computer Networks, IEEE Access, and Personal and Ubiquitous Computing.Prof. Chaomin Luo, University of Detroit Mercy Dr. Chaomin Luo received his Ph.D. in Department
activities. Table 1shows various topics and their corresponding laboratory activities. The hydraulic laboratoryactivities are already completed and available; however, the pneumatic laboratory activitiesare in the process of development. Table below shows the outline of a typical Fluid PowerCourse. Table 1. The contents of fluid power. Lecture Lab Principles and Laws No lab Pumps Labs 1 - 4 Cylinders Labs 6, 7, 9, and 10Hydraulics Valves Motors Labs 5 and 8
, implementation of Autodesk MoldflowTM as an instructional tool forpromoting a dynamic interactive classroom environment and providing seamless integration ofclassroom activities such as traditional classroom teaching, computer simulation ofmanufacturing process, and actual physical laboratory experience related with the process. In thatregard, Autodesk MoldflowTM is used as one of the tools that would be used for promotingpositive outcomes associated with the student learning. Autodesk MoldflowTM is used formodeling and simulating of the plastic injection molding process. During computer simulationlaboratories, specific examples of Autodesk MoldflowTM is introduced for providing ideas tostudents on how the manufacturing process would be improved by
a variety of courses in the ChE department and currently focuses on the Unit Op- erations Laboratory, Mass and Energy Balances, and Separations. He completed the National Effective Teaching Institute course (NETI-1) in June, 2016. Dr. Clay is married to Dr. Kristy Clay, a veterinarian, and has three children, Luke (14), Natalie (14), and Meredith (12). c American Society for Engineering Education, 2017 Leading an Effective Unit Operations Lab CourseAbstractThis paper is focused on the logistics and unique learning opportunities present in supervising aUnit Operations laboratory course. Specifically, the paper outlines some best
content.For this paper, two student groups, in an EET laboratory experience, are compared based onthe primary metric number of failed attempts to meet circuit board test specifications. Thestudent test body was divided into two groups. A control course section group, where notroubleshooting instruction was given and designated the “As Is” state. The second sectiongroup, “Improved State” was given an extensive troubleshooting methodology as part of theirinitial training. The primary metric, number of failed attempts to meet specification, waschosen as it is easy to measure by student Teaching Assistants (TA) and was also used to assessthe Sigma process capability for each group. The Sigma capability of each group provided afurther measure of the
Paper ID #19398Development and Usage of an Online Homework System in a Chemical Engi-neering CurriculumKyle Joe Branch, University of Utah Kyle Branch is a fourth-year graduate student at the University of Utah Department of Chemical Engi- neering. He has helped develop and teach a freshman laboratory course, and an introduction to chemical engineering course which both use the online homework system described. His main research interest is in engineering education, focusing on the creation and analysis of interactive simulations for undergraduate chemical engineering courses.Prof. Anthony Butterfield, University of Utah
Paper ID #20019Electronic Lab Notebooks Impact Biomedical Engineering Students’ Qualityof Documentation and Technical CommunicationMs. Monica Dominique Okon, The Ohio State University Monica Okon, a current graduate student in biomedical engineering at Ohio State University, became in- terested in engineering education when starting as a graduate teaching associate (GTA) for the Engineering Education Department at Ohio State University. She has had the opportunity to teach the Fundamentals in Engineering laboratory component for the standard courses sequence as well as served as a lead GTA for this department for two years
Paper ID #20504MAKER: Using 3D Printed Experimental Design and Measurement of Inter-nal and External Flow Convection Coefficient Using 3D Printed GeometriesMr. Michael Golub, Indiana University-Purdue University, Indianapolis Michael Golub is the Academic Laboratory Supervisor for the Mechanical Engineering department at IUPUI. He is an associate faculty at the same school, and teaches part-time at two other colleges. He has conducted research related to Arctic Electric Vehicles. He participated and advised several student academic competition teams for several years. His team won 1st place in the 2012 SAE Clean
vehicles and the creation of a GPS based navigation system to assist students with visual impairments navigate and orient themselves to Purdue’s campus. c American Society for Engineering Education, 2017 Transformation of an Introduction to Microcontroller CourseAbstractThis paper outlines the curriculum changes made to a freshman introduction to microcontrollercourse in response to several outside factors including the overall reduction of credit hoursavailable for a degree, the total number of credit hours available per course, and the various callsto move away from standard laboratory experiences in favor of more discovery basedexperiences. The course has undergone a transformation from a standard two