Paper ID #27395An Improved Cellphone-based Wearable Electrocardiograph Project for aBiomedical Instrumentation Course SequenceDr. Charles Carlson, Kansas State University Charles Carlson received a B.S. degree in Physics from Fort Hays State University in 2013 as well as B.S., M.S., and Ph.D. degrees in Electrical Engineering from Kansas State University in 2013, 2015, and 2019, respectively. Charles is currently a Graduate Teaching and Research Assistant in Electrical and Computer Engineering at Kansas State University (KSU). He works in the KSU Medical Component Design Laboratory and is interested in engineering
Paper ID #27966A Gold Nanoparticle-based Lab Experiment Sequence to Enhance Learningin Biomedical Nanotechnology at the Undergraduate LevelDr. Rachel C. Childers, University of Oklahoma Dr. Childers is an Assistant Professor and Chair of Undergraduate Studies in the Stephenson School of Biomedical Engineering at the University of Oklahoma. She developed and teaches all of the Junior-level biomedical engineering lab courses (6 different core areas) within the department.Dr. Stefan Wilhelm, University of Oklahoma Stephenson School of Biomedical Engineering c American Society for Engineering Education
student interest. Dr. Warren is a member of the American Society for Engineering Education and the Institute of Electrical and Electronics Engineers.Dr. Charles Carlson, Kansas State University Charles Carlson received a B.S. degree in Physics from Fort Hays State University in 2013 as well as B.S., M.S., and Ph.D. degrees in Electrical Engineering from Kansas State University in 2013, 2015, and 2019, respectively. Charles is currently a Graduate Teaching and Research Assistant in Electrical and Computer Engineering at Kansas State University (KSU). He works in the KSU Medical Component Design Laboratory and is interested in engineering education, bioinstrumentation, and bioinformatics. He is a member of the American
Engineering (BME) from The Ohio State University (OSU), before joining the OSU BME Department as an Assistant Professor of Practice in 2014. Her roles include designing and teaching undergraduate BME laboratory courses, and mentoring multidisciplinary senior capstone teams on rehabilitation engineering and medical device design projects. She also leads K-12 engineering outreach events, and is pursuing scholarship in student technical communication skills and preparing BME students for careers in industry. c American Society for Engineering Education, 2019 Work in Progress:Biomedical Engineering Students’ Perspectives on a Laboratory Technical Writing
innovative teaching methods proposed in the flipped classroommodel as described herein.This paper focuses on the implementation of a flipped classroom for an undergraduate biomedical engineeringintroductory biomechanics course consisting of 77 junior and senior engineering students. Key aspects of thiscourse included pre-recorded video lectures, interactive problem-based learning during in-class time, onlinehomework, and applied examples of course content experienced during laboratory sessions. Unique assistancein the development of this course was provided by graduate students who provided significant contributions tothe prep work needed to prepare a course for the flipped classroom model. The purpose of this paper was todetermine the effectiveness
Paper ID #27353Retrospective Multi-year Analysis of Team Composition Dynamics and Per-formance within a Yearlong Integrative BME Laboratory SequenceDr. Timothy E. Allen, University of Virginia Dr. Timothy E. Allen is an Associate Professor and Interim Undergraduate Program Director in the De- partment of Biomedical Engineering at the University of Virginia. He received a B.S.E. in Biomedical Engineering at Duke University and M.S. and Ph.D. degrees in Bioengineering at the University of Cal- ifornia, San Diego. Dr. Allen’s teaching activities include coordinating the core undergraduate teaching labs and the Capstone Design
their lab that tied in directly with the learningobjectives of their module. Additional applications were presented at the end of the course in afew 30 min biomaterial presentations from the handful of graduate students in the course.Throughout the semester, the graduate students performed literature research projects which threecheck points in which specific parts of the project were assigned. These check-points coincidedwith the hands-on laboratories performed by the undergraduate students (the majority of the class).Hands-on ActivitiesThe content of each module ended with a hands-on laboratory for the undergraduates that was heldin our dedicated biomaterials and biomechanics teaching laboratory. The large class was split intotwo groups. One
Paper ID #27515Board 9: Introducing Bioengineering Approaches through Healthcare GrandChallengesDr. Marcia Pool, University of Illinois, Urbana-Champaign Dr. Marcia Pool is a Teaching Associate Professor and Director of Undergraduate Programs in the Depart- ment of Bioengineering at the University of Illinois at Urbana-Champaign (UIUC). She has been active in improving undergraduate education including developing laboratories to enhance experimental design skills and mentoring and guiding student teams through the capstone design and a translational course following capstone design. In her Director role, she works closely
Paper ID #25404Work in Progress: Vertical Integration of Engineering Design in an Under-graduate BME CurriculumDr. Steven Higbee , Indiana University Purdue University, Indianapolis Steve is a Clinical Assistant Professor of Biomedical Engineering at Indiana University-Purdue University Indianapolis. He received his PhD in Bioengineering from Rice University (Houston, TX) in 2013, after earning his BS and MS degrees from Purdue University (West Lafayette, IN). His current position focuses on teaching, advising, and promotion of undergraduate research.Dr. Sharon Miller, Indiana University Purdue University, Indianapolis Dr
Biomedical Engineering) from Carnegie Mellon University. Dr. Zapanta has served as a Visiting Assistant Professor of Engineering at Hope College in Holland, MI, an Adjunct Professor of Engineering at Austin Community College in Austin, TX, and an Assistant Professor of Surgery and Bioengineering at The Pennsylvania State University in Hershey, PA. He also worked for CarboMedics Inc. in Austin, TX, in the research and development of prosthetic heart valves. Dr. Zapanta’s primary teaching responsibilities are Biomedical Engineering Laboratory and Design. Ad- ditional teaching interests include medical device design education and professional issues in biomedical engineering. Dr. Zapanta’s responsibilities as Associate
an alumnus of the Biology Scholars Program of the American Society of Microbiol- ogy. Prior to becoming focused on engineering education, his research interests included hemodynamics and the study of how vascular cells respond to fluid forces and its implications in vascular pathologies.Dr. Larry Fennigkoh P.E., Milwaukee School of Engineering Dr. Larry Fennigkoh is a professor of biomedical engineering at the Milwaukee School of Engineering teaching graduate and undergraduate courses in medical instrumentation, biomedical engineering design, biomechanics, biostatistics, and human physiology. He is a Registered Professional Engineer and board certified in clinical engineering. He is also a member of the Institute of
course incorporates content fromthe previous courses in the sequence as well as from a fundamental statistics course in thecontext of experimental design and measurement. We anticipate that SBG will allow forfrequent, formative feedback throughout a single course as well as inform the instruction offaculty teaching subsequent courses building on these standards, including courses beyond thissequence such as Capstone. Our long-term goal will be to identify, align, and assess LO withinand across these courses in the curriculum using SBG. We will also review and assessimplementation of SBG in this context.This preliminary work focuses on implementation of SBG in the culminating course. Wehypothesize that Canvas-mediated SBG will 1) allow for
, CO, USA) in 2018. There she gained experience working as a graduate teaching assistant for computer aided engineering, biomedical engineering capstone design, and biomedical engineering introductory classes. She served as a Graduate Teaching Fellow for the College of Engineering during the 2016/2017 academic year. Nicole is currently a instructional post-doctoral fellow in the Transforming Engineering Education Laboratory within the Biomedical Engineering Department at the University of Michigan. Her engineering education interests include collaborative active learning, assessment methods and accreditation, and curriculum design.Dr. Aileen Huang-Saad, University of Michigan Aileen is faculty in Engineering
Paper ID #27521Board 6: Work in Progress: Alternative Lab Reports for Biomedical Engi-neeringDr. Karin Jensen, University of Illinois, Urbana-Champaign Karin Jensen is a Teaching Assistant Professor in bioengineering at the University of Illinois at Urbana- Champaign. Before joining UIUC she completed a post-doctoral fellowship at Sanofi Oncology in Cam- bridge, MA. She earned a bachelor’s degree in biological engineering from Cornell University and a Ph.D. in biomedical engineering from the University of Virginia.Prof. Paul Jensen, University of Illinois at Urbana-Champaign Paul Jensen is an Assistant Professor at the
Paper ID #27198Project-Based Active Learning Techniques Enhance Computer ProgrammingAcademic and Career Self-Efficacy of Undergraduate Biomedical Engineer-ing StudentsMr. S. Cyrus Rezvanifar, University of Akron S. Cyrus Rezvanifar is a Ph.D. student in Biomedical Engineering at The University of Akron. He has also served as a research assistant in Cleveland Clinic Akron General since 2016, where he conducts research on biomechanics of human knee joint and patellar instability. In 2016, he received a doctoral teaching fellowship from the College of Engineering at The University of Akron. Through this teaching program, he
Paper ID #26771Incorporating Engineering Standards Throughout the Biomedical Engineer-ing CurriculumDr. Sarah Ilkhanipour Rooney, University of Delaware Sarah I. Rooney is an Assistant Professor and Director of the Undergraduate Program in the Biomedical Engineering department at the University of Delaware, where she seeks to bring evidence-based teaching practices to the undergraduate curriculum. She received her B.S.E. (2009) and M.S.E. (2010) in Biomed- ical Engineering from the University of Michigan (Ann Arbor) and her Ph.D. (2015) in Bioengineering from the University of Pennsylvania.Dr. Jeannie S. Stephens-Epps, Terumo
State University (OSU), before joining the OSU BME Department as an Assistant Professor of Practice in 2014. Her roles include designing and teaching undergraduate BME laboratory courses, and mentoring multidisciplinary senior capstone teams on rehabilitation engineering and medical device design projects. She also leads K-12 engineering outreach events, and is pursuing scholarship in student technical communication skills and preparing BME students for careers in industry. c American Society for Engineering Education, 2019 To What Extent Does Gender and Ethnicity Impact Engineering Students’ Career Outcomes? An exploratory analysis comparing biomedical to three other undergraduate
Design Program. Passionate about expanding engaged, active-learning experiences and clinical immersion opportunities for students that improve their ability to execute the design process, Dr. Schmedlen has developed an undergraduate capstone design course, biomedical engineering laboratory, and clinical observation and needs finding course.Dr. Jin Woo Lee, University of Michigan Jin Woo Lee received a Ph.D. in Mechanical Engineering from the University of Michigan. Jin’s research focuses on studying and developing design strategies, particularly in problem definition and concept gen- eration.Dr. Prateek Shekhar, University of Michigan Prateek Shekhar is an Assistant Research Scientist in the Biomedical Engineering