, teamwork, and technicalcommunication]; and 5) be easy to implement [as measured by transferability, sustainability, andscalability]. DBT parallels the underlying pedagogy narrative of New Learning developed byKalantzis and Cope [9], and it overlaps with Energy Engineering Laboratory Module (EELM™)pedagogy [10], which posits that learning experiences must be hands-on, accessible, student-centered, economical, and “turn-key”. DBT and EELM™ project hardware must be affordablefor an institution with limited resources and be buildable and operable by a handy high schoolcourse instructor or technician without situated knowledge or access to specialized tools orequipment.Anecdotally, educators have been using model rocketry for decades in middle/high
Paper ID #26111Optimizing Student Team Skill Development using Evidence-Based Strate-gies: Year 4 NSF Award 1431694Dr. Matthew W. Ohland, Purdue University-Main Campus, West Lafayette (College of Engineering) Matthew W. Ohland is Professor of Engineering Education at Purdue University. He has degrees from Swarthmore College, Rensselaer Polytechnic Institute, and the University of Florida. His research on the longitudinal study of engineering students, team assignment, peer evaluation, and active and collaborative teaching methods has been supported by the National Science Foundation and the Sloan Foundation and his team
Paper ID #27217Student Perspectives on the Use of iPads for Navigating Construction Draw-ings: A Case StudyDr. Tom Michael Leathem, Auburn University Tom Leathem is an Assistant Professor in the McWhorter School of Building Science at Auburn Univer- sity where he teaches courses in Estimating, Construction Documents, Scheduling, and Project Delivery. He has 11 years industry experience in commercial construction management, holds a Ph.D. in Educa- tion, an M.S. in Integrated Design & Construction, and a B.S. in Construction Management. His areas of research include construction education, assessment, accreditation
, she is responsible for participating in teaching, scholarship and service for the department. Dr. Stiner-Jones received her Bachelor’s and PhD. degrees from Wright State University and her MBA from Capital University. After completing her PhD in Biomedical Sciences, she completed postdocs, in neuroimmunology and psychoneuroimmunology at Ohio State. Her work has been published in numerous scientific journals and presented both nationally and internationally. After completing her postdoctoral fellowship, Dr. Stiner-Jones accepted a faculty position in Ohio State’s College of Dentistry and served as Director of Minority Student Recruitment and DENTPATH, a post baccalaureate program to prepare disadvantaged
Programs in Paducah, Kentucky, where he has taught for 19 years. His PhD and MS studies in ChE were completed at Vanderbilt University, and his BSChE at the University of Alabama. Silverstein’s research interests include conceptual learning tools and training, and he has particular interests in faculty development. He is the recipient of several ASEE awards, including the Fahein award for young faculty teaching and educational scholarship, the Corcoran award for best article in the journal Chemical Engineering Education (twice), and the Martin award for best paper in the ChE Division at the ASEE Annual Meeting.Dr. Derek Lynn Englert, University of KentuckyDr. John R. Baker P.E., University of Kentucky John R. Baker is
Manufacturing and Quality Engineering. His current work primarily investigates the effects of select emergent pedagogies upon student and instructor performance and experience at the collegiate level. Other interests include engineering ethics, engineering philosophy, and the intersecting concerns of engineering industry and higher academia.Mr. Nick Stites, Purdue University, West Lafayette Nick A. Stites is the Co-Director of the Integrated Teaching and Learning Program and Laboratory at the University of Colorado Boulder. He is also an instructor in the Engineering Plus Program. His research interests include the development of novel pedagogical methods to teach core engineering courses and leveraging technology to enhance
operations, highway safety, and geographic information systems. His research interests include: constructing spatial databases for bet- ter management of transportation infrastructure, improving transportation design, operation, safety and construction, understanding long-term effects of urban development patterns, and advancing active living within the built environment for improved public health. He teaches courses in interchange design, trans- portation engineering, highway design. engineering management, geographic information systems, and land surveying. He has served in numerous leadership positions in ITE, ASCE and TRB.Dr. Kevin C. Bower, The Citadel Dr. Kevin Bower is a Professor and the Associate Provost for
Paper ID #24675Mechanical Engineering Organized Around Mathematical SophisticationDr. Louis J. Everett, University of Texas, El Paso Dr. Everett is the MacGuire Distinguished Professor of Mechanical Engineering at the University of Texas El Paso. Dr. Everett’s current research is in the areas of Mechatronics, Freshman Programs and Student Engagement. Having multiple years of experience in several National Laboratories and Industries large and small, his teaching brings real world experiences to students. As a former NSF Program Director he works regularly helping faculty develop strong education proposals.Dr
Paper ID #24851Efficacy of Social Media Communications for Enhancing Student SuccessDr. Louis J. Everett, University of Texas, El Paso Dr. Everett is the MacGuire Distinguished Professor of Mechanical Engineering at the University of Texas El Paso. Dr. Everett’s current research is in the areas of Mechatronics, Freshman Programs and Student Engagement. Having multiple years of experience in several National Laboratories and Industries large and small, his teaching brings real world experiences to students. As a former NSF Program Director he works regularly helping faculty develop strong education proposals.Dr. Norman
(formerly known as the University of Missouri-Rolla). Dr. Schonberg has 25 years teaching and research experience in the areas of shock physics, spacecraft protection, hypervelocity impact, and penetration mechanics. He received his B.S.C.E from Princeton University in 1981, and his M.S. and Ph.D. degrees from Northwestern Uni- versity in 1983 and 1986, respectively. The results of his research have been applied to a wide variety of engineering problems, including the development of orbital debris protection systems for spacecraft in low earth orbit, kinetic energy weapons, the collapse of buildings under explosive loads, insensitive munitions, and aging aircraft. Since 1986, Dr. Schonberg has published over 65 papers in
University of Science & Technology in Ghana in 1997 and a M.Sc. and Ph.D. from the University of South Carolina. His research activities include repair and strengthening of buildings and bridges using Advanced Composite Materials, laboratory and field testing of structures and the fatigue behavior of concrete bridges.Prof. James H. Hanson P.E., Rose-Hulman Institute of Technology Dr. James Hanson is a Professor of Civil Engineering at the Rose-Hulman Institute of Technology. His teaching emphasis is structural analysis and design. Over the last thirteen years he has conducted research on teaching students how to evaluate the reasonableness of their results. He is the recipient of several best paper awards and teaching
other mechanisms. Prof. Hosoi is an exceptional, innovative teacher and an inspiring mentor for women in engineering. She was awarded the Bose Award for Excellence in Teaching, and a MacVicar Fellowship.She is a recipi- ent of the 3M Innovation Award and has held the Doherty Chair in Ocean Utilization at MIT. She is a Radcliffe Institute Fellow and a Fellow of the American Physical Society. Her research interests include fluid mechanics, bioinspired design and locomotion, with a focus on optimization ofcrawling gastropods, digging bivalves, swimming microorganisms and soft robotics. Prof. Hosoi is also an avid mountain biker and her passion for sports has led her to create MIT Sports Lab, a program that is designed
“Knowledge.” • “Abilities” refers to the power or capacity to perform an activity or task. For example, having the ability to use a variety of laboratory instruments [5], or the ability to plan and organize. • “Skills” are the capabilities or proficiencies developed through training or hands-on experience. Skills are the practical application of theoretical knowledge. Someone can take a course on investing in financial futures, and therefore has knowledge of it. But getting experience in trading these instruments adds skills [6]. • “Knowledge” statements refer to an organized body of information usually of a factual or procedural nature which, if applied, makes adequate performance on the job possible
Paper ID #25371Facilitating Collaborative Engineering Analysis Problem Solving in Immer-sive Virtual RealityAlexander James Tuttle, University of Georgia Alexander Tuttle is an undergraduate student at the University of Georgia majoring in Computer Systems Engineering. He works in Dr. Kyle Johnsen’s Virtual Experiences Laboratory where he develops and researches various Virtual Reality applications.Dr. Siddharth Savadatti, University of Georgia Dr. Siddharth Savadatti received his PhD in Computational Mechanics from North Carolina State Univer- sity in 2011 and has since been on the faculty of the College of Engineering at
Paper ID #26638Using Reflection to Facilitate Writing Knowledge Transfer in Upper-LevelMaterials Science CoursesDr. Jennifer C. Mallette, Boise State University An Assistant Professor of English at Boise State University, Dr. Jenn Mallette teaches technical com- munication at the undergraduate and graduate level. In addition to working with STEM students in her undergraduate technical communication course, she collaborates with faculty in the College of Engineer- ing to focus on enhancing writing education in engineering courses. Her other research focuses on women engineering, and she has recently published the results of a
and MS Biomed- ical Engineering degrees from Drexel University, and her PhD Bioengineering degree from the University of Washington. Between her graduate degrees, she worked as a loop transmission systems engineer at AT&T Bell Laboratories. She then spent 13 years in the medical device industry conducting medical de- vice research and managing research and product development at several companies. In her last industry position, Dr. Baura was Vice President, Research and Chief Scientist at CardioDynamics. She is a Fellow of the American Institute of Medical and Biological Engineering (AIMBE).Leanne Kallemeyn, Loyola University Chicago Leanne Kallemeyn, Ph.D., is an Associate Professor in Research Methodologies
underrepresented racial and ethnic minority students using motivational frameworks.Mr. Harrison Douglas Lawson, Michigan State University I completed my undergraduate Chemical Engineering degree at the University of Pittsburgh. I am cur- rently a graduate student at Michigan State University pursuing a Ph.D. in Chemical Engineering. My research is biology and education focused. After graduating, I aspire to continue working with education programs and join a university as teaching faculty.Dr. Daina Briedis, Michigan State University DAINA BRIEDIS is a faculty member in the Department of Chemical Engineering and Materials Science at Michigan State University and Assistant Dean for Student Advancement and Program Assessment in
Research, vol. 74, pp. 59-109[12] J. W. Thomas (2000). A review of research on project-based learning, accessed on Jan. 29.2019, www.bie.org/index.php/site/RE/pbl_research/29[13] B. D. Jones, “Motivating students to engage in learning: The MUSIC model of academicmotivation,” International Journal of Teaching and Learning in Higher Education, vol. 21 (2),272-285, accessed on Jan. 29, 2019, http://files.eric.ed.gov/fulltext/EJ899315.pdf[14] R. J. Marzano, D. J. Pickering and T. Heflebowen, The highly engaged classroom, MarzanoResearch Laboratory, 2011[15] A. Bandura, “Self-efficacy mechanism in human agency,” American Psychologist, vol. 37(2), pp. 122–147, 1982, doi:10.1037/0003-066X.37.2.122[16] A. Carroll and S. Houghton, “Self-efficacy and
introduction activitycan be further pursued in a modern design or prototyping class to study the effects of availabilityof prototyping equipment in student’s ideation and process.Anecdotally, instructors lament that engineering design is ‘hard to learn and harder to teach.’ Therehas been a rising interest in ‘Design for additive manufacturing’ (DfAM) education within the pastdecade. DfAM is a thought process where existing and new design principles are consolidated todevelop a framework which could optimally make use of the design freedom served by Additivemanufacturing. Williams and Seepersad [7] attempted to address the gap in AM education bydeveloping an undergraduate/graduate course to educate students on the underlying science of AMprocesses
4 graphical user interfaces.Koretsky, Kelly, The authors conducted a .93, .85, and .89 Cohen’s Kappa score for& Gummer content analysis to contrast three different laboratories offered under(2011) the survey responses of each of the two conditions. undergraduates who attended a virtual laboratory versus those who attended a physical laboratory.Mentzer, Becker, The authors coded the The authors reported the interrater& Sutton (2015) engineering design thinking reliability, as indicated by Cohen’s kappa, of 59 high school students’ for
appointments. She has ex- perience in teaching at the undergraduate and the graduate level. In addition to her academic work, Dr. Erdil worked as an engineer in sheet metal manufacturing and pipe fabrication industry for five years. She holds B.S. in Computer Engineering, M.S. in Industrial Engineering. She received her Ph.D. in Industrial and Systems Engineering from Binghamton University (SUNY). Her background and research interests are in quality and productivity improvement using statistical tools, lean methods and use of information technology in operations management. Her work is primarily in manufacturing and healthcare delivery operations.Dr. Maria-Isabel Carnasciali, University of New Haven Maria-Isabel
systems; water and sanitation issues in the developing world; and sustainability in engineer- ing education. Pablo is passionate about teaching and increasing the participation of underrepresented students in STEM.Mr. Kevin Orner, University of South Florida Kevin Orner is a Ph.D. Candidate in Environmental Engineering at the University of South Florida, where he studies nutrient management of wastewater. Kevin was a Teaching Assistant and course instructor for the Sustainable Development Engineering course in Fall 2014. After obtaining a B.S. in Civil and Envi- ronmental Engineering with a certificate in Technical Communication from the University of Wisconsin- Madison, Kevin served for two years as a Peace Corps
Engineering. He currently teaches first-year engineering courses as well as various courses in Mechanical Engineering, primarily in the mechanics area. His pedagogical research areas include standards-based assessment and curriculum design, including the incorporation of entrepreneurial thinking into the engineering curriculum and especially as pertains to First-Year Engineering.Brock Alexander Hays, Ohio Northern University Brock Hays is currently an undergraduate student at Ohio Northern University. At Ohio Northern, he is studying Middle Childhood Education, with concentrations in both Mathematics and Language Arts, with generalist certifications in both Social Studies and Science. c
Science Department at Forman Christian College (A Chartered University) at Pakistan for eight years and was recognized for outstanding teaching with the year 2013 teaching award. Saira was also the recipient of ”President of Pakistan Merit and Talent Scholarship” for her undergraduate studies.Dr. Muhsin Menekse, Purdue University, West Lafayette Muhsin Menekse is an assistant professor at Purdue University with a joint appointment in the School of Engineering Education and the Department of Curriculum & Instruction. Dr. Menekse’s primary research focus is on students’ learning of complex tasks and concepts in STEM domains. Specifically, he investigates how classroom activities and learning environments affect
] Trundle, K. C., Bell, R. L., "The Use of A Computer Simulation to Promote ConceptualChange: A Quasi-Experimental Study," Journal of Computers and Education, Vol. 54(4), 2010.[10] Zacharia, Z. C., Olympiou, G., Papevripidou, M., "Effects of Experimenting with Physicaland Virtual Manipulatives on Students Conceptual Understanding in Heat and Temperature,"Journal of Research in Science Teaching, Vol. 45(2), 2008.[11] Campbell, J. O., Bourne, J. R., Mosterman, P. J., Brodersen, A. J., “The Effectiveness ofLearning Simulations for Electronic Laboratories,” The Research Journal for EngineeringEducation, Vol. 91(1), 2002.[12] Carruthers, B. E., Clingan, P. A., “Use of Fluent Software in a First-Year EngineeringMicrofluidic Design Course,” Proceedings of
committees aligning the Standards of Learning (SOLs) to the Newport News Public Schools pacing guide for biology as well as creating the curricu- lum for Forensic science which is taught in all five high schools within Newport News. She has taught Environmental science, Biology, Advanced Placement biology, Human Anatomy, and Forensic science. Within her three years at Virginia Space Grant Consortium, she has used Qualtrics to examine pre-test and post-test surveys in the middle/high school program that she coordinates to examine its effectiveness in leading students to explore STEM related careers. She received her B.S. in Biology from Virginia Com- monwealth University and her M.S. in Clinical Laboratory Sciences
Paper ID #26771Incorporating Engineering Standards Throughout the Biomedical Engineer-ing CurriculumDr. Sarah Ilkhanipour Rooney, University of Delaware Sarah I. Rooney is an Assistant Professor and Director of the Undergraduate Program in the Biomedical Engineering department at the University of Delaware, where she seeks to bring evidence-based teaching practices to the undergraduate curriculum. She received her B.S.E. (2009) and M.S.E. (2010) in Biomed- ical Engineering from the University of Michigan (Ann Arbor) and her Ph.D. (2015) in Bioengineering from the University of Pennsylvania.Dr. Jeannie S. Stephens-Epps, Terumo
total frequency. Therefore, the majority of the classrooms across sitesrepresented community-centered and assessment-centered instruction, meaning that studentsconnected with each other in class and engaged in active feedback with their instructor and witheach other. This baseline data highlights that EML classrooms differ from traditional lecture-based courses and are quite interactive. Future research may use the G-RATE to determine ifsimilar interactive activities are occurring in new or partially-infused EML courses or tohighlight differences in EML-based instruction by course type (e.g., laboratory or lecture).Observation data may also be analyzed over time to note how changes in pedagogy orcurriculum influence a classroom and student
level workshops and seminars, and a high level research experience in NYU faculty labs. Her commitment to diversity and equity is paramount to her work in STEAM and activism. As a former Adjunct Professor at Teachers College, Columbia University and biomedical scientist in immunology Dr. Borges balances the world of what scientists do and brings that to STEAM education in order to provide culturally relevant profes- sional development and curricula that aligns to the Next Generation Science Standards (NGSS). More- over, Dr. Borges is treasurer and co-chair of the Northeastern Association of Science Teacher Education (NE-ASTE) where faculty, researchers, and educators discuss present STEM teaching and learning and
is an Undergraduate Mechanical Engineering student at Cal State LA. Joseph is an undergraduate research assistant, the Vice President of CSULA’s Robosub team, and he recently began an internship at NASA’s Jet Propulsion Laboratory. Outside of engineering education, his research interests are in the field of trajectory planning and control for potential future Mars exploration aircraft.Mr. Jorge Diego Santillan, California State University, Los Angeles AUV Mr. J.Diego Santillan is an Electrical Engineer employed at NASA’s Jet Propulsion Laboratory, cur- rently pursuing his Master’s in Computer Engineering. Diego acted as the President for the Robosub team as well as the senior design team lead for the same project in